Refine Your Search

Topic

Author

Search Results

Technical Paper

A Dynamic Trajectory Planning for Automatic Vehicles Based on Improved Discrete Optimization Method

2020-04-14
2020-01-0120
The dynamic trajectory planning problem for automatic vehicles in complex traffic scenarios is investigated in this paper. A hierarchical motion planning framework is developed to complete the complex planning task. An improved dangerous potential field in the curvilinear coordinate system is constructed to describe the collision risk of automatic vehicles accurately instead of the discrete Gaussian convolution algorithm. At the same time, the driving comfort is also considered in order to generate an optimal, smooth, collision-free and feasible path in dynamics. The optimal path can be mapped into the Cartesian coordinate system simply and conveniently. Furthermore, a velocity profile considering practical vehicle dynamics is also presented to improve the safety and the comfort in driving. The effectiveness of the proposed dynamic trajectory planning is verified by numerical simulation for several typical traffic scenarios.
Technical Paper

A Trajectory Planning and Fuzzy Control for Autonomous Intelligent Parking System

2017-03-28
2017-01-0032
This paper proposed a two-section trajectory planning algorithm. In this trajectory planning, sigmoid function is adopted to fit two tangent arcs to meet limited parking spaces by reducing the radius of turning. Then the transverse preview model is established and the path tracking errors including distance error and angle error are estimated. The weight coefficient is considered to distribute the impact factor of traverse distance error or traverse angle error in the total error. The fuzzy controller is designed to track the two-section trajectory in autonomous intelligent parking system. The fuzzy controller is developed due to its real-time and robustness in the parking process. Traverse errors and its first-order derivative are selected as input variables and the outer wheel steering angle is selected as the output variable in fuzzy controller. They are also divided into seven fuzzy sets. Finally, forty rules are decided to achieve effective trajectory tracking.
Technical Paper

An Electrorheologically Controlled Semi-Active Landing Gear

1993-04-01
931403
This study is to explore the application of electrorheology (ER) to the real-time control of damping forces that are transmitted through the nose landing gear for an F-106B aircraft. The main part of the landing gear is a strut that consists of a pneumatic spring and an ER controlled damper that is situated on the strut centerline and applies a force directly opposing the vertical displacement of the nose wheel. The damping element rotates in response to strut displacement, employing a co-axial arrangement of stator and rotor plates connected to the opposing electrodes in the control circuit. The vertical displacement is converted into rotation of the damper through a screw-nut mechanism. The ER fluid between the electrodes is thus engaged in shear along circumferential lines of action. This design results in a fast time response and a high ratio of strut forces achieved under ER- vs. zero-field control. Compact size and simplicity in fabrication are also attained.
Technical Paper

An Experimental Investigation of Lubricant/Main Shaft Interaction and Dryout in an Automatic Transmission Model

1998-05-04
981447
When unexpected integrated lubricant-related problems occur, for example, high-speed operating conditions, lubricants can be degraded and even fail to reach certain automatic transmission parts. Dryout of oil films means a serious lack of lubrication, which may damage the power transmission line and key parts. Dryout of ATF is analogous to that in forced convective boiling and condensation. It thus requires special efforts to determine the mechanics that induce such fluid transport phenomena. This paper presents an experimental investigation of lubricant activities in the main shaft. Dimensional analysis is applied, and flow maps of the air-oil flow and dryout regimes are constructed. Correlations closely agree with the data and reveal the possibility of dryout. Heat transfer effect is briefly discussed.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Technical Paper

An Indirect Occupancy Detection and Occupant Counting System Using Motion Sensors

2017-03-28
2017-01-1442
This paper proposes a low-cost but indirect method for occupancy detection and occupant counting purpose in current and future automotive systems. It can serve as either a way to determine the number of occupants riding inside a car or a way to complement the other devices in determining the occupancy. The proposed method is useful for various mobility applications including car rental, fleet management, taxi, car sharing, occupancy in autonomous vehicles, etc. It utilizes existing on-board motion sensor measurements, such as those used in the vehicle stability control function, together with door open and closed status. The vehicle’s motion signature in response to an occupant’s boarding and alighting is first extracted from the motion sensors that measure the responses of the vehicle body. Then the weights of the occupants are estimated by fitting the vehicle responses with a transient vehicle dynamics model.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Technical Paper

Assessing Driver Distraction: Enhancements of the ISO 26022 Lane Change Task to Make its Difficulty Adjustable

2023-04-11
2023-01-0791
The Lane Change Task (LCT) provides a simple, scorable simulation of driving, and serves as a primary task in studies of driver distraction. It is widely accepted, but somewhat limited in functionality, a problem this project partially overcomes. In the Lane Change Task, subjects drive along a road with 3 lanes in the same direction. Periodically, signs appear, indicating in which of the 3 lanes the subject should drive, which changes from sign to sign. The software is plug-and-play for a current Windows computer with a Logitech steering/pedal assembly, even though the software was written 18 years ago. For each timestamp in a trial, the software records the steering wheel angle, speed, and x and y coordinates of the subject. A limitation of the LCT is that few characteristics of this useful software can be readily modified as only the executable code is available (on the ISO 26022 website), not the source code.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Technical Paper

Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion

2016-10-17
2016-01-2242
Pre-chambers are a means to enable lean burn combustion strategies which can increase the thermal efficiency of gasoline spark ignition internal combustion engines. A new engine concept is evaluated in this work using computational simulations of non-reacting flow. The objective of the computational study was to evaluate the feasibility of several engine design configurations combined with fuel injection strategies to create local fuel/air mixtures in the pre-chambers above the ignition and flammability limits, while maintaining lean conditions in the main combustion chamber. The current work used computational fluid dynamics to develop a novel combustion chamber geometry where the flow was evaluated through a series of six design iterations to create ignitable mixtures (based on fuel-to-air equivalence ratio, ϕ) using fuel injection profiles and flow control via the piston, cylinder head, and pre-chamber geometry.
Technical Paper

Correlation of Cord Loads in Tires on Roadwheel and Highway

1970-02-01
700093
Strain gage instrumented transducers were used to measure the cord loads at a number of locations in several different automotive tires loaded against both flat and cylindrical road wheel surfaces. The two basic types of cord load fluctuation encountered in all automobile tires have been identified from these measurements, and the most severe location for cord load fluctuations has been closely bracketed. By these measurements, it has been possible to show that for each tire definite relations exist between the cord loads induced while running on a cylindrical drum and while running on a flat surface. The maximum cord load fluctuations in a tire are the same for the NBS roadwheel and flat surface when the tire is loaded against the roadwheel with a load of between 85 and 90% of that used on the flat surface.
Technical Paper

Design Optimization of Vehicle Structures for Crashworthiness via Equivalent Mechanism Approximations

2004-03-08
2004-01-1731
A new method for crashworthiness optimization of vehicle structures is presented, where an early design exploration is done by the optimization of an equivalent mechanism approximating a vehicle structure. An equivalent mechanism (EM) is a network of rigid bodies connected by prismatic and revolute joints with special nonlinear springs. These springs are designed to mimic the force-displacement characteristics of thin-walled beams often found in the vehicle body structures. A computer software is implemented that allows the designer to quickly construct an equivalent mechanism model of a structure using a graphical user interface (GUI) to optimize the model for given objectives prior to final tuning using finite element (FE) models. A case study of a vehicle front substructure consisting of mid and lower rails is presented, which demonstrates that the new approach can obtain a better design with less computational resources than the direct optimization of a FE model.
Technical Paper

Design and Analysis of Multi-Axle Steering System of Heavy Duty Vehicle

1993-11-01
931919
This paper presents a new method which adopts the theory of multi-rigid body system dynamics to solve the kinematics of multi-axle steering system of heavy-duty vehicle, introduces several new concepts such as component coordinate system, intermediate datum coordinate system, train component analysis method, and so on, develops a kinematics analysis software for steering system, takes QY80 auto-crane as an example, analyses the kinematics of four-axle steering system. Basing on the kinematics analysis, this paper creates the mathematical model of optimization for the steering rocker mechanism, chooses minimization adoptive random search method to develop an optimization design microcomputer program, and optimizes each design variable finally.
Technical Paper

Design and Production of Mg Wheels in China

2007-04-16
2007-01-1035
The high strength-weight ratio and high damping capability of Magnesium alloys implies significant potentials for improving fuel efficiency and vehicle performance with the use Mg wheels. In this paper, a brief review is given of the current state of art in Mg wheel production, followed by a summary of the mechanical and casting properties of Mg alloys. The difficulties that hinder the wide use of Mg wheels are discussed. The R&D activities in China in the fields of Mg wheel design and casting are described. The focus of this paper is on the design and the development of a new squeeze casting process that makes it feasible to produce high-quality Mg wheels with cost efficiency. Finally, the expected commercial use of Mg wheels in the near future in Chinese motorbikes is outlined.
Technical Paper

Determination of Coastdown Mechanical Loss Ambient Correction Factors for use with J2263 Road Tests

1997-02-24
970269
Testing for vehicle emissions and fuel economy certification occurs primarily on chassis dynamometers in a laboratory setting and therefore the actual road conditions, such as forces due to tire rolling resistance and internal friction, must be simulated. Test track coastdown procedures measure vehicle road load forces and produce an equation which relates these forces to velocity. The recent inclusion of onboard anemometry has allowed the coastdown procedure to account for varying wind effects; however, the new anemometer based mechanical loss coefficients do not take into account ambient weather conditions. The two purposes of this study are (1) to determine the new tire rolling resistance temperature correction coefficient that should be used when test ambient temperature is different from the standard reference value of 68°F, and (2) to investigate the effects of auxiliary measurements, such as other ambient conditions and vehicle settings, on this correction coefficient.
Technical Paper

Disc Brake Lining Shape Optimization by Multibody Dynamic Analysis

2004-03-08
2004-01-0725
Improving the performance characteristics of a typical disc brake encompasses a number of design strategies as well as limitations imposed by cost objectives. Utilizing pad loading uniformity in a design is one strategy that offers an improvement in desired performance characteristics, including a reduction in tapered lining wear as well as a possible reduced propensity for noise generation. To approach this design strategy, a procedure has been developed to tailor the brake pad lining profile to maximize pad loading uniformity in a multibody dynamics model of a typical disc brake. In determining an optimal lining configuration, a suitable compromise for gaining beneficial performance improvements in a cost effective manner is reached. The implementation of this design strategy involves the parametric definition of the lining profile by introducing a series of variables that are linked to the profile markers.
Journal Article

Driver Lane Change Prediction Using Physiological Measures

2015-04-14
2015-01-1403
Side swipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. Past studies of lane change detection have relied on vehicular data, such as steering angle, velocity, and acceleration. In this paper, we use three physiological signals from the driver to detect lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver's response to the driving environment. A novel system is proposed which uses a Granger causality test for feature selection and a neural network for classification. Test results showed that for 30 lane change events and 60 non lane change events in on-the-road driving, a true positive rate of 70% and a false positive rate of 10% was obtained.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

Equivalent Consumption Minimization Strategy for a Power Split Supercharger

2019-04-02
2019-01-1207
Low voltage hybridization (<60 V) supports engine start/stop, regenerative braking, and constrained torque assist/regeneration at a low cost. This work studies the potential benefits of a novel hybrid system, called a power split supercharger (PSS). A 9 kW motor is shared between boosting the engine or providing hybrid functionalities, allowing it to couple with a small engine and still support good acceleration. However, the PSS operation is limited to only one of the parallel hybrid or boosting modes at each time instance. In this work an equivalent consumption minimization strategy (ECMS) is developed to select the PSS mode and the motor torque during hybrid mode. The PSS operation is simulated over standard EPA drive cycles with an engine mean value model that captures detailed air path and PSS dynamics.
X