Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Distributed Control System Framework for Automotive Powertrain Control with OSEK Standard and CAN Network

1999-03-01
1999-01-1276
This paper presents a distributed control system framework for next-generation automotive control systems, in which various control units are connected with CAN bus. The framework is a software platform that performs communication between control units and invocation of application programs. The framework includes necessary functions for data transmission to meet end-to-end timing constraints in distributed control systems. Application programmers don't have to write any communication procedure but focus on developing application programs with appropriate API (Application Program Interface). The framework is based on driving force management and also OSEK, which is a standard real-time operating system (OSEK-OS) and a communication protocol (CAN) for automotive control. We are now applying our prototype framework to an adaptive cruise control system in our experimental vehicle.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

2006-04-03
2006-01-0671
Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

A Two-Tracer LIF Strategy for Quantitative Oxygen Imaging in Engines Applied to Study the Influence of Skip-Firing on In-Cylinder Oxygen Contents of an SIDI Engine

2003-03-03
2003-01-1114
The effect of skip-firing (which is often applied in optical engine work) on the available in-cylinder oxygen concentration was investigated with a laser-induced fluorescence imaging setup that combines the measurement of fluorescence signals from toluene and 3-pentanone to quantitatively determine the distribution of molecular oxygen. We describe in detail the image processing procedure for this measurement. The reduction of in-cylinder oxygen when switching from skip-fired to continuous-fired engine operation is measured and compared to traditional exhaust measurements.
Technical Paper

ADAS Feature Concepts Development Framework via a Low Cost RC Car

2017-03-28
2017-01-0116
ADAS features development involves multidisciplinary technical fields, as well as extensive variety of different sensors and actuators, therefore the early design process requires much more resources and time to collaborate and implement. This paper will demonstrate an alternative way of developing prototype ADAS concept features by using remote control car with low cost hobby type of controllers, such as Arduino Due and Raspberry Pi. Camera and a one-beam type Lidar are implemented together with Raspberry Pi. OpenCV free open source software is also used for developing lane detection and object recognition. In this paper, we demonstrate that low cost frame work can be used for the high level concept algorithm architecture, development, and potential operation, as well as high level base testing of various features and functionalities. The developed RC vehicle can be used as a prototype of the early design phase as well as a functional safety testing bench.
Technical Paper

Airborne Laser Radar Investigations of Clear Air Turbulence

1966-02-01
660190
Conclusions based on the airborne experiments with laser radars are summarized in this paper. Details of the equipment and the flight procedures will be displayed during the oral presentation at the conference.
Technical Paper

An Architecture for Autonomous Agents in a Driving Simulator

2000-04-02
2000-01-1596
The addition of synthetic traffic to a driving simulation greatly enhances the realism of the virtual world. Giving this traffic human-like behavior is likewise desirable, and has been the focus of some research over the past few years. This paper presents a modular architecture for including autonomous traffic in a driving simulation, and describes the first steps taken toward the application of this architecture to the DaimlerChrysler Auburn Hills Simulator. By separating the planning part of the agent from the low-level control and vehicle dynamics systems, the described architecture permits the inclusion of powerful, previously developed components in a straightforward way; in the present application, agents use Soar to reason about their actions. This paper gives an overview of the structures of the agents, and of the entire system, describes the components and their implementations, and discusses the current state of the project and plans for the future.
Technical Paper

An Experimental Heat Release Rate Analysis of a Diesel Engine Operating Under Steady State Conditions

1997-02-24
970889
An experimental heat release rate analysis was conducted on a six cylinder, 12.7 liter Detroit Diesel Series 60 turbocharged engine operating under steady state conditions. The overall chemical, or gross, rate of heat release and the net apparent rate of heat release were determined from experimental measurements. The gross, time averaged, heat release rate was determined by two separate concepts/methods using exhaust gas concentration measurements from the Nicolet Rega 7000 Real Time Exhaust Gas Analyzer and the measured exhaust gas flow rate. The net apparent rate of heat release was determined from the in-cylinder pressure measurements for each of the six cylinders, averaged over 80 cycles. These pressure measurements were obtained using a VXI based Tektronix data acquisition system and LabVIEW software. A computer algorithm then computed the net apparent rate of heat release from the averaged in-cylinder pressure measurements.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

Assessing Driver Distraction: Enhancements of the ISO 26022 Lane Change Task to Make its Difficulty Adjustable

2023-04-11
2023-01-0791
The Lane Change Task (LCT) provides a simple, scorable simulation of driving, and serves as a primary task in studies of driver distraction. It is widely accepted, but somewhat limited in functionality, a problem this project partially overcomes. In the Lane Change Task, subjects drive along a road with 3 lanes in the same direction. Periodically, signs appear, indicating in which of the 3 lanes the subject should drive, which changes from sign to sign. The software is plug-and-play for a current Windows computer with a Logitech steering/pedal assembly, even though the software was written 18 years ago. For each timestamp in a trial, the software records the steering wheel angle, speed, and x and y coordinates of the subject. A limitation of the LCT is that few characteristics of this useful software can be readily modified as only the executable code is available (on the ISO 26022 website), not the source code.
Technical Paper

Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators

2003-06-17
2003-01-2216
Assessments of reach capability using human figure models are commonly performed by exercising each joint of a kinematic chain, terminating in the hand, through the associated ranges of motion. The result is a reach envelope determined entirely by the segment lengths, joint degrees of freedom, and joint ranges of motion. In this paper, the validity of this approach is assessed by comparing the reach envelopes obtained by this method to those obtained in a laboratory study of men and women. Figures were created in the Jack human modeling software to represent the kinematic linkages of participants in the laboratory study. Maximum reach was predicted using the software's kinematic reach-envelope generation methods and by interactive manipulation. Predictions were compared to maximum reach envelopes obtained experimentally. The findings indicate that several changes to the normal procedures for obtaining maximum reach envelopes for seated tasks are needed.
Technical Paper

Balance Maintenance during Seated Reaches of People with Spinal Cord Injury

2004-06-15
2004-01-2138
In many task analyses using digital human figure models, only the terminal or apparently most stressful posture is analyzed. For reaches from a seated position, this is generally the posture with the hand or hands at the target. However, depending on the characteristics of the tasks and the people performing them, analyzing only the terminal posture could be misleading. This possibility was examined using data from a study of the reaching behavior of people with spinal cord injury. Participants performed two-handed forward reaching tasks. These reaches were to three targets located in the sagittal plane. The terminal postures did not differ significantly between those with spinal cord injury and those without. However, motion analysis demonstrated that they employed distinct strategies, particularly in the initial phase of motion.
Technical Paper

Balancing IC Engine Torque Via Individual Cylinder Spark Control

1997-02-24
970026
This paper presents a method of balancing the cylinder to cylinder torque fluctuation of an idling engine by controlling the individual spark timing. This method has the capability to compensate for individual fuel/air imbalance that might occur for example due to miscalibration of a fuel injector. The method is based upon noncontacting crankshaft angular speed flucuations and upon a control system that regulates individual spark timing in response to imbalance in that speed variation. The theory of the method is explained and experimental verification of the method is presented for a 4 cylinder engine.
X