Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Energy Method for Torque Control of a Synchronous Traction Motor

The problem of increasing the accuracy of determining the torque and the load angle of the permanent magnet synchronous motor of an electric traction drive to the predicted level (2.5...3)% of the full-scale error is solved by an indirect method. We considered the algorithms for calculating the generalized current and voltage of the electric motor, the total power, the instantaneous values of the power factor, and the sine of the phase angle between the first harmonics of voltages and currents. We determined the requirements for the accuracy of determining these values at the level of 1% of the full-scale error. We considered the algorithms for determining the total instantaneous power losses by the indirect method at the predicted level (15...20)% of the full-scale error with the efficiency of the motor (90...95)%.
Technical Paper

Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator

In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.