Refine Your Search

Topic

Search Results

Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

A Value Analysis Tool for Automotive Interior Door Trim Panel Materials and Process Selection

2007-04-16
2007-01-0453
This paper describes a computerized value analysis tool (VAT) developed to aid automotive interior designers, engineers and planners to achieve the high levels of perceived quality of materials used in automotive door trim panels. The model requires a number of inputs related to types of materials, their manufacturing processes and customer perceived quality ratings, costs and importance of materials, features located in different areas of the door trim panel, etc. It allows the user to conduct iterative evaluation of total cost, total weighted customer perceived quality ratings, and estimates of perceived value (perceived quality divided by cost) for different door trim areas as well as the entire door trim panel. The VAT, thus, allows value and cost management related to materials and processing choices for automotive interiors.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

Design for Lean Manufacturing

2003-03-03
2003-01-1375
There is great value in applying lean philosophies and methods to the product creation process, especially in today's competitive environment. Customers now demand better quality (especially a better fit with the product's intended use) and new products with even greater frequency than in the past. The integration of lean methodology throughout product creation is an obvious choice as a systematic way of meeting customer demands. Lean methods result in shorter time to market because understanding and meeting customer wants and needs is an integral starting point in the process. A more in-depth use of lean methods results in better quality and a reduced cost of product creation. Because of more frequent product changes, the cost of the product determined during product creation becomes even more critical. Further, if product creation costs are not reduced, the cost to the customer will increase, putting the product and the company in a less competitive position.
Technical Paper

Development of Innovative Design Concepts for Automotive Center Consoles

2006-04-03
2006-01-1474
The objective of the paper is to present a unique design approach and its outputs: the design concepts for automotive center consoles for a near term SUV that can be produced in 2-3 years, and the second for, a more futuristic SUV, that could be produced in 10 or more years. In the first phase of this two phase project, we benchmarked center consoles from a number of existing and concept vehicles, analyzed available data (e.g. J.D. Power customer feedback surveys), and conducted studies (e.g. survey of items stored in the vehicles, item location preferences in the console area) to understand customer/user needs in designing the center consoles. In the second phase, we provided the information generated in the first phase to four groups of student teams who competed to create winning designs of the center consoles.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Effect of Surface Pretreatments on Adhesive Bonding and Corrosion Resistance of AM60B, AZ31-H24, and AM30 Magnesium

2009-04-20
2009-01-0037
This study reports the performance of three different automotive magnesium substrate materials (AM60B diecastings, AZ31-H24 sheet, and AM30 extrusions), each bonded to a common aluminum reference material with two different toughened adhesives. The magnesium substrates were pretreated with six different commercial pretreatments both with and without a final fused-powder polymeric topcoat. These samples were then evaluated by comparing initial lap-shear strength to the lap-shear strength after cyclic-corrosion testing. Additionally, use of a scribe through the polymer primer permitted assessment of: 1) distance of corrosion undercutting from the scribe (filiform), and 2) percent corrosion over the area of the coupon. The results showed that the performance of each magnesium pretreatment varied on cast AM60B, sheet AZ31-H24, and extruded AM30 substrates.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

2012-04-16
2012-01-0771
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Formability Analysis of Thermoplastic Lightweight Fiber-Metal Laminates

2006-04-03
2006-01-0118
This study investigates numerically and experimentally the formability of two Fiber-Metal Laminate systems based on a thermoplastic self-reinforced polypropylene and a glass fiber polypropylene composite materials. These hybrid systems consist of layered arrangements of aluminum 2024-T3 sheets and thermoplastic-based composite materials. Flat panels were manufactured using a fast one step cold press manufacturing procedure. Punch-stretch forming tests and numerical simulations were performed in order to evaluate the formability of the hybrid systems. Experimental and simulation results revealed that the self reinforced thermoplastic composite-based Fiber-Metal Laminate exhibit excellent forming properties similar to that of the monolithic aluminum alloy of comparable thickness.
Technical Paper

Formability of Aluminum Tailor-Welded Blanks

2000-03-06
2000-01-0772
The use of tailor welded blanks (TWBs) in automotive applications is increasing due to the potential of weight and cost savings. These blanks are manufactured by joining two or more sheets of dissimilar gauge, properties, or both, to form a lighter blank of desired strength and stiffness. This allows an engineer to “tailor” the properties of the blank to meet the design requirements of a particular panel. TWBs are used in such places as door inner panels, lift gates, and floor pans. Earlier investigations of the use of TWBs targeted steel alloys, but the potential of further weight savings with aluminum TWBs is gaining interest in the automotive industry. Unlike steel TWBs, the welds in aluminum TWBs are not significantly stronger than the base material and are occasionally the fracture site. Additionally, the reduced formability of aluminum, as compared with drawing-quality steels, makes the application of aluminum TWBs more difficult than steel TWBs.
Technical Paper

Formability of Ti-TWBs at Elevated Temperatures

2006-04-03
2006-01-0353
In this paper, the formability of Ti-TWBs at different elevated temperatures is experimentally investigated. Ti-TWBs made of Ti-6Al-4V sheets with thicknesses of 0.7mm and 1.0mm are manufactured. Then, the tensile test and forming test at elevated temperatures, ranging from room temperature to 600°C, have been carried out to determine the mechanical properties and the formability of the prepared Ti-TWBs respectively. The effects of elevated temperatures on both the forming and failure behaviors of the Ti-TWBs are examined by comparing with that of the Ti-6Al-4V base metal. It is found that the formability of the Ti-TWBs at room temperature with a dissimilar thickness combination is lower than that of their base metal, whilst the formability of both the Ti-TWBs and their base metal increases with increasing forming temperature. In addition, failures have often been found at the thinner base metal during the Ti-TWB forming, provided that the quality weld is attained without defect.
Technical Paper

Integrated Brake Squeal with Induced Thermal Stress Analysis

2017-06-05
2017-01-1900
Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
Technical Paper

Interfacial Fracture in Environmentally Friendly Thermoplastic Composite-Metal Laminates

2006-04-03
2006-01-0117
This paper investigates the interfacial fracture properties of composite-metal laminates by using the single-cantilever beam testing technique. The hybrid systems consisted of a layer of aluminum alloy (6061 or 2024-T3) bonded to polypropylene based composites. In this study, two non-chromate surface treatments were applied to the aluminum substrates: SafeGard CC-300 Chrome free seal (from Sanchem Inc.) and TCP-HF (from Metalast International Inc.). These are environmentally friendly surface treatments that enhance the adhesion and corrosion resistance of aluminum alloys. Flat hybrid panels were manufactured using a one step cold press manufacturing procedure. Single cantilever bend specimens were cut from the panels and tested at 1mm/min. Results have shown that the CC-300 treated Al 2024-T3 alloy and Twintex exhibited higher interfacial fracture energy values.
Technical Paper

Investigation and Benchmarking for Vehicle Floor Coverings

2003-05-05
2003-01-1575
A systematic benchmarking study was performed to investigate the acoustic performance of production floor coverings (i.e. carpets) of vehicles. A larger number of passenger cars including compact, mid-size, full size, and a truck were selected. The floor coverings were removed from these vehicles and evaluated both on absorption and sound transmission loss (STL) performances. The methodology used and the experimental results are presented in this paper. It was discovered that the design of the carpet is more important than the materials used. In addition, a carpet with highest absorption does not necessarily have the best STL and vice versa. However, an optimum design could achieve high performance in both categories.
Technical Paper

Investigation of Thermoforming as a Method of Manufacturing Plastic Air Intake Manifolds

2000-03-06
2000-01-0045
Current plastic intake manifolds are manufactured using the injection molding process. In this paper, thermoforming is explored as an alternative to injection molding for making intake manifold shells, which can then be joined by one of the welding techniques used for thermoplastic materials. The investigation reported here includes press-forming experiments of a simple bowl shaped shell and subsequent welding experiments to join these shells.
Technical Paper

LS-DYNA3D Simulation of Sheet Metal Forming using Damage Based User Subroutine

2001-03-05
2001-01-1129
LS-DYNA3D has been widely used to perform computer simulation of sheet metal forming. In the material library of LS-DYNA3D there are a number of user defined material models. In order to take full advantage of the material subroutines, it is important for the users to be able to display user defined history variables in the post processing and to establish user-defined failure criterion. In this report, the development of a damage coupled plastic model is firstly described. The damage model is then programmed in a user defined material subroutine. This is followed by performing finite element simulation of sheet metal forming with the LS-DYNA3D that has incorporated the damage coupled plastic model. The way to display the user defined history variables and how to deal with the failure criterion during the postprocessing of ETA/DYNAFORM are described. History variable distributions at several time steps are displayed and discussed in this paper.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Paint Bake Influence on AA7075 and AA7085

2017-03-28
2017-01-1265
The typical paint bake cycle includes multiple ramps and dwells of temperature through e-coat, paint, and clear coat with exposure equivalent to approximately 190°C for up to 60 minutes. 7xxx-series aluminum alloys are heat treatable, additional thermal exposure such as a paint bake cycle could alter the material properties. Therefore, this study investigates the response of three 7xxx-series aluminum alloys with respect to conductivity, hardness, and yield strength when exposed to three oven curing cycles of a typical automotive paint operation. The results have indicated that alloy composition and artificial aging practice influence the material response to the various paint bake cycles.
X