Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

An Elastoplastic Damage Coupled Analysis for Crashworthiness of Aluminum Materials

1996-02-01
960169
This paper presents a comprehensive damage model capable of predicting crash behavior of aluminum structures under varying applied loading conditions. The damage model has been implemented in a general purpose explicit nonlinear finite element code and crash analysis has been carried out for aluminum tubes. The response obtained from the finite element analysis shows a close agreement with the experimental data. The finite element program containing the proposed generalized damage model can be used to analyze aluminum structures subjected to complex service loading conditions and identify associated failure modes to assess crashworthiness.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

2006-04-03
2006-01-0257
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Technical Paper

Effect of Surface Pretreatments on Adhesive Bonding and Corrosion Resistance of AM60B, AZ31-H24, and AM30 Magnesium

2009-04-20
2009-01-0037
This study reports the performance of three different automotive magnesium substrate materials (AM60B diecastings, AZ31-H24 sheet, and AM30 extrusions), each bonded to a common aluminum reference material with two different toughened adhesives. The magnesium substrates were pretreated with six different commercial pretreatments both with and without a final fused-powder polymeric topcoat. These samples were then evaluated by comparing initial lap-shear strength to the lap-shear strength after cyclic-corrosion testing. Additionally, use of a scribe through the polymer primer permitted assessment of: 1) distance of corrosion undercutting from the scribe (filiform), and 2) percent corrosion over the area of the coupon. The results showed that the performance of each magnesium pretreatment varied on cast AM60B, sheet AZ31-H24, and extruded AM30 substrates.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

2012-04-16
2012-01-0771
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper

Mechanical Response of Composite Reinforced Aluminum Foam Sandwich Systems for Automotive Structures

2007-04-16
2007-01-1722
This paper presents the design and manufacture a sandwich structure bumper beam that could withstand at least the same load required to have plastic deformation in a 2002 Jeep Wrangler bumper beam at a lower weight. The dimensions from a bumper beam were scaled down in order to match the limiting length of the sandwich structure specimens. Theoretical optimization calculations were conducted in order to find the optimal dimensions and face thicknesses for the hybrid structures. Sandwich panels were based on Glass Fiber Reinforced Polypropylene (Twintex) and an Aluminum foam core (Alporas). Three point bending tests were performed on the sandwich structures. The resulting failure modes were revealed and found to be in agreement with those offered by the analytical predictions.
Technical Paper

Spot Friction Welding of Mg-Mg, Al-Al and Mg-Al Alloys

2008-04-14
2008-01-0144
Spot friction welding is considered a cost-effective method for joining lightweight automotive alloys, such as magnesium and aluminum alloys. An experimental study was conducted to investigate the strength of spot friction welded joints of magnesium to magnesium, aluminum to aluminum, magnesium to aluminum and aluminum to magnesium. The joint structures and failure modes were also studied.
X