Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

A Clean, Quiet, Environmentally Friendly Snowmobile

2002-10-21
2002-01-2763
In an attempt to reach a compromise between the views of environmentalists and snowmobile enthusiasts, the University of Wisconsin-Madison Clean Snowmobile Team set out to design a machine that maintains performance while decreasing air and noise pollution. After careful consideration of all possible design avenues, the decision was made to select a four-stroke power plant. In order to optimize the engine's efficiency, an engine control unit was chosen that was both capable and affordable. Engine modifications were made to allow the snowmobile's stock transmission to be used. Alterations were also made to intake, exhaust, and cooling systems to allow the engine to fit comfortably under the snowmobile's stock hood. Modifications were made to the snowmobile's chassis to accommodate the additional mass associated with the four-stroke engine. The final product is a snowmobile that minimizes environmental impact but still has the appearance and performance necessary to satisfy consumers.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Co-Simulation Framework for Full Vehicle Analysis

2011-04-12
2011-01-0516
The paper describes a methodology to co-simulate, with high fidelity, simultaneously and in one computational framework, all of the main vehicle subsystems for improved engineering design. The co-simulation based approach integrates in MATLAB/Simulink a physics-based tire model with high fidelity vehicle dynamics model and an accurate powertrain model allowing insights into 1) how the dynamics of a vehicle affect fuel consumption, quality of emission and vehicle control strategies and 2) how the choice of powertrain systems influence the dynamics of the vehicle; for instance how the variations in drive shaft torque affects vehicle handling, the maximum achievable acceleration of the vehicle, etc. The goal of developing this co-simulation framework is to capture the interaction between powertrain and rest of the vehicle in order to better predict, through simulation, the overall dynamics of the vehicle.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

A Matrix-Based Porous Tube Water and Nutrient Delivery System

1992-07-01
921390
A system was developed which provides nutrients and water to plants while maintaining good aeration at the roots and preventing water from escaping in reduced gravity. The nutrient solution is circulated through porous tubes under negative pressure and moves through the tube wall via capillary forces into the rooting matrix, establishing a non-saturated condition in the root zone. Tests using prototypes of the porous tube water and nutrient delivery system indicate that plant productivity in this system is equivalent to standard soil and solution culture growing procedures. The system has functioned successfully in short-term microgravity during parabolic flight tests and will be flown on the space shuttle. Plants are one of the components of a bioregenerative life support system required for long duration space missions.
Technical Paper

A Modular HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0740
A dynamic powertrain system model of the High Mobility Multi-Wheeled Vehicle (HMMWV) was created in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison. Simulink graphical programming software was used to create the model. This dynamic model includes a Torsen differential model and a Hyrda-matic 4L80-E automatic transmission model as well as several other powertrain component models developed in the PCRL. Several component inertias and shaft stiffnesses are included in the dynamic model. The concepts of modularity, flexibility, and user-friendliness were emphasized during model development so that the system model would be a useful design tool. Simulation results from the model are shown.
Technical Paper

A New Approach to System Level Soot Modeling

2005-04-11
2005-01-1122
A procedure has been developed to build system level predictive models that incorporate physical laws as well as information derived from experimental data. In particular a soot model was developed, trained and tested using experimental data. It was seen that the model could fit available experimental data given sufficient training time. Future accuracy on data points not encountered during training was estimated and seen to be good. The approach relies on the physical phenomena predicted by an existing system level phenomenological soot model coupled with ‘weights’ which use experimental data to adjust the predicted physical sub-model parameters to fit the data. This approach has developed from attempts at incorporating physical phenomena into neural networks for predicting emissions. Model training uses neural network training concepts.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A Numerical Study of Automotive Gas Tank Filler Pipe Two Phase Flow

2001-03-05
2001-01-0732
Automotive refueling is gaining greater importance because fuel vapors released during refueling are believed to increase ozone levels in urban areas. As a step towards On-Board Refueling Vapor Recovery (ORVR) designs, vapor generation and transport during refueling needs to be understood to develop recovery techniques. The objective of the present study is to understand the fluid flow inside the automotive gas tank filler pipe using commercially available Computational Fluid Dynamics (CFD) software. This effort is expected to yield detailed flow field information, including air entrainment. The phenomena of well-back, the process of fuel flooding the filler pipe and flowing backwards at the filler pipe mouth, and the pressure transients inside the tank leading to premature nozzle shut-off were examined. The current work includes unsteady CFD simulation with gasoline and air as the working fluids.
Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

1997-05-01
971597
The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
Technical Paper

A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion

2001-03-05
2001-01-1027
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers.
Technical Paper

A Study on Automatic Transmission System Optimization Using a HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0977
This Paper introduces a modular, flexible and user-friendly dynamic powertrain model of the US Army's High Mobility Multi-Wheeled Vehicle (HMMWV). It includes the DDC 6.5L diesel engine, Hydra-matic 4L80-E automatic transmission, Torsen differentials, transfer case, and flexible drive and axle shafts. This model is used in a case study on transmission optimization design to demonstrate an application of the model. This study shows how combined optimization of the transmission hardware (clutch capacity) and control strategy (shift time) can be explored, and how the models can help the designer understand dynamic interactions as well as provide useful design guidance early in the system design phase.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

1997-02-24
970353
The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Technical Paper

A Transient Heat Transfer System for Research Engines

2007-04-16
2007-01-0975
An ongoing goal of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison has been to expand and improve the ability of the single cylinder internal combustion research engine to represent its multi-cylinder engine counterpart. To date, the PCRL single cylinder engine test system is able to replicate both the rotational dynamics (SAE #2004-01-0305) and intake manifold dynamics (SAE #2006-01-1074) of a multi cylinder engine using a single cylinder research engine. Another area of interest is the replication of multi-cylinder engine cold start emissions data with a single-cylinder engine test system. For this replication to occur, the single-cylinder engine must experience heat transfer to the engine coolant as if it were part of a multi-cylinder engine, in addition to the other multi-cylinder engine transient effects.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

A/F Ratio Visualization in a Diesel Spray

1994-03-01
940680
We have applied an imaging system to a spray in an engine-fed combustion bomb to investigate some of the features of diesel spray ignition. A high pressure electronic unit injector with main and pilot injection features was used. Our interest in this work was the local air/fuel ratio, particularly in the vicinity of the spray plumes. The measurement was made by seeding the air in the intake manifold with biacetyl. A tripled ND:YAG laser causes the biacetyl to fluoresce with a signal that is proportional to its local concentration. The biacetyl partial pressure was carefully controlled, enabling approximate estimates of the local stoichiometry in the fuel spray. Twenty-four different cases were sampled. Parameters varied include swirl ratio, fuel quantity, number of holes in the fuel nozzle and distribution of fuel quantities in the pilot and main injections. This paper presents the results of three of these cases.
X