Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Numerical and Experimental Study Towards Possible Improvements of Common Rail Injectors

2002-03-04
2002-01-0500
The aim of this work is to propose modifications to the managing of the 1st generation Common Rail injectors in order to reduce actuation time towards multiple injection strategies. The current Common Rail injector driven by 1st ECU generation is capable of operating under stable conditions with a minimum dwell between two consecutive injections of 1.8 ms. This limits the possibility in using proper and efficient injection strategies for emission control purposes. A previous numerical study, performed by the electro-fluid-mechanical model built up by Matlab-Simulink environment, highlighted different area where injector may be improved with particular emphasis on electronic driving circuit and components design. Experiments carried out at injector Bosch test-bench showed that a proper control of the solenoid valve allowed reducing drastically the standard deviation during the pilot pulses.
Technical Paper

Setup of a 1D Model for Simulating Dynamic Behaviour of External Gear Pumps

2007-10-30
2007-01-4228
External gear pumps are widely used in many different applications because of their relatively low costs and high performances, especially in terms of volumetric and mechanical efficiency. The main weaknesses of external gear pumps can be summarized as follows: 1 Sudden increase or decrease of pressure inside volumes between teeth, which could lead respectively to noise emissions and to cavitation onset; 2 Necessity of limiting power losses and increasing volumetric efficiency, obtainable by reducing leakage flows between components; 3 Need of maintaining an ad-hoc minimum lubrication film thickness. In recent years many efforts, in terms of mathematical models and experimental tests, were done in order to limit energy losses and noise emissions. With the aim of deeply studying dynamic behaviour of external gear pumps and addressing their design, a 1D model was developed by means AMESim® code.
Technical Paper

Setup of a 1D Model for Simulating Dynamic Behaviour of Motorcycle Forks

2009-04-20
2009-01-0226
Shock absorbers and damper systems are important parts of automobiles and motorcycles because they have effects on safety, ride comfort, and handling. In particular, for vehicle safety, shock absorber system plays a fundamental role in maintaining the contact between tire and road. Generally, to assure the best trade-off between safety and ride comfort, a fine experimental tuning on all shock absorber components is necessary. Inside a common damper system the presence of several conjugated actions made by springs, oil and pressurized air requires a significant experimental support and a great number of prototypes and test. Aimed to reduce the design and tuning phases of a damper system, it is necessary to join these phases together with a numerical modelling phase. The aim of this paper is to present the development of a mono-dimensional (1D) model for simulating dynamic behaviour of damper system.
X