Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Development and Implementation of Hardware in the Loop Simulation for Dual Clutch Transmission Control Units

2013-04-08
2013-01-0816
A control oriented model of a Dual Clutch Transmission was developed for real time Hardware In the Loop (HIL) applications. The model is an innovative attempt to reproduce the fast dynamics of the actuation system maintaining a step size large enough for real time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models; a stable real time simulation is achieved with a simplification of the model without losing physical validity. After an offline validation, the model was implemented in a HIL system and connected to the TCU (Transmission Control Unit) via two input-output boards, and to a load plate which comprehends all the actuators.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Journal Article

Innovative Techniques for On-Board Exhaust Gas Dynamic Properties Measurement

2013-04-08
2013-01-0305
The purpose of this paper is to present some innovative techniques developed for an unconventional utilization of currently standard exhaust sensors, such as HEGO, UEGO, and NOx probes. In order to comply with always more stringent legislation about pollutant emissions, intake-exhaust systems are becoming even more complex and sophisticated, especially for CI engines, often including one or two UEGO sensors and a NOx sensor, and potentially equipped with both short-route and long-route EGR. Within this context, the effort to carry out novel methods for measuring the main exhaust gas dynamic properties exploiting sensors installed for different purposes, could be useful both for control applications, such as EGR rates estimation, or cost reduction, minimizing the on-board devices number. In this work, a gray-box model for measuring the gas mass flow rate, based on standard NOx sensor operating parameters of its heating circuit, is analyzed.
Journal Article

Model-Based Control of Test Bench Conditioning Systems

2018-04-03
2018-01-0129
Engine test benches are crucial instruments to perform tests on internal combustion engines. Since many factors affect tests results, an engine test bench is usually equipped with several conditioning systems (oil, water and air temperature, air humidity, etc.), in order to maintain the controlled variables to the target values, throughout the test duration. The conditioning systems are often independently controlled by means of dedicated programmable logic controllers (PLC), but a centralized model-based management approach could offer several advantages in terms of promptness and accuracy. This work presents the application of such control methodology to oil, water, and HVAC (heating, ventilating, and air conditioning) conditioning systems, where each actuator is managed coupling model-based open loop controls to closed loop actions.
Journal Article

The Use of Piezoelectric Washers for Feedback Combustion Control

2020-04-14
2020-01-1146
The use of piezoelectric cylinder pressure sensors is very popular during engine testing, but cylinder pressure information is becoming mandatory also in several on-board applications, where Low Temperature Combustion (LTC) approaches require a feedback control of combustion, due to poor combustion stability and the risk of knock or misfire. Several manufacturers showed the capability to develop solutions for cylinder pressure sensing in on-board automotive and aeronautical applications, and some of them have been patented. The most straight-forward approach seems the application of a piezo-electric washer as a replacement of the original part equipping the spark plug; the injector could also be used to transfer the cylinder pressure information to the piezoelectric quartz, in diesel or Gasoline Direct Injections (GDI) engines.
X