Refine Your Search



Search Results

Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
Technical Paper

A Model for the Investigation of Temperature, Heat Flow and Friction Characteristics During Engine Warm-Up

A computational model has been developed to support investigations of temperature, heat flow and friction characteristics, particularly in connection with warm-up behaviour. A lumped capacity model of the engine block and head, empirically derived correlations for local heat transfer and friction losses, and oil and coolant circuit descriptions form the core of the model. Validation of the model and illustrative results are reported.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Journal Article

A Novel Diagnostics Tool for Measuring Soot Agglomerates Size Distribution in Used Automotive Lubricant Oils

The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
Technical Paper

Application of Adaptive Local Mesh Refinement (ALMR) Approach for the Modeling of Reacting Biodiesel Fuel Spray using OpenFOAM

Modeling the combustion process of a diesel-biodiesel fuel spray in a 3-dimensional (3D) computational fluid dynamics (CFD) domain remains challenging and time-consuming despite the recent advancement in computing technologies. Accurate representation of the in-cylinder processes is essential for CFD studies to provide invaluable insights into these events, which are typically limited when using conventional experimental measurement techniques. This is especially true for emerging new fuels such as biodiesels since fundamental understanding of these fuels under combusting environment is still largely unknown. The reported work here is dedicated to evaluating the Adaptive Local Mesh Refinement (ALMR) approach in OpenFOAM® for improved simulation of reacting biodiesel fuel spray. An in-house model for thermo-physical and transport properties is integrated to the code, along with a chemical mechanism comprising 113 species and 399 reactions.
Technical Paper

Audit of Fuel Utilisation During the Warm-Up of SI Engines

Experimental studies of fuel utilisation during the early stages of engine warm-up after cold-starts are reported. The investigation has been carried out on a 1.81, 4 cylinder spark-ignition engine with port electronic fuel injection. The relationship between fuel supplied and fuel accounted for by the analysis of exhaust gas composition shows that a significant mass of fuel supplied is temporarily stored or permanently lost. An interpretation of data is made which allows time-dependent variations of these to be separately resolved and estimates of fuel quantities made. The data covers a range of cold-start conditions down to -5°C at which, on a per cylinder basis, fuel stored peaks typically at around 0.75g and a total of 1g is returned over 100 seconds of engine running. Fuel lost past the piston typically accounts for 2g over 200 to 300 seconds of running.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

Computer Aided Evaluation of Cold Start Fuelling Strategy and Calibration Details for Spark Ignition Engines

Spark ignition engines for automotive applications must have good cold start performance characteristics at sub-zero ambient temperatures. Satisfactory performance is most difficult to achieve at the lower end of the temperature range, typically around -30°C. The start characteristics of a particular engine depend on basic design features, starter motor characteristics, and the calibration and strategy used to regulate fuel supply during start up. The paper reports a computational model which enables the investigation of these with the minimum of experimental data. The model has been developed to run on desk-top PC machines, specifically as a CAE development tool. The formulation of the model and the experimental tests were used to generate the input data required for particular applications are described.
Technical Paper

Constraints on Fuel Injection and EGR Strategies for Diesel PCCI-Type Combustion

An experimental study has been carried out to explore what limits fuel injection and EGR strategies when trying to run a PCCI-type mode of combustion on an engine with current generation hardware. The engine is a turbocharged V6 DI diesel with (1600 bar) HPCR fuel injection equipment and a cooled external EGR system. The variables examined have been the split and timings of fuel injections and the level of EGR; the responses investigated have been ignition delay, heat release, combustion noise, engine-out emissions and brake specific fuel consumption. Although PCCI-type combustion strategies can be effective in reducing NOx and soot emissions, it proved difficult to achieve this without either a high noise or a fuel economy penalty.
Technical Paper

Correlation of Engine Heat Transfer for Heat Rejection and Warm-Up Modelling

A correlation for total gas-side heat transfer rate has been derived from the analysis of engine data for measured heat rejection rate, frictional dissipation, and published data on exhaust port heat transfer. The correlation is related to the form developed by Taylor and Toong, and the analysis draws on this. However, cylinder and exhaust port contributions are separated. Two empirical constants are fixed to best match predicted to measured results for heat rejection to coolant and oil cooler under steady-state conditions, and also for exhaust port heat transfer rates. The separated contributions also defined a correlation for exhaust port heat transfer rate. The description of gas-side heat transfer is suited to needs for the analysis of global thermal behaviour of engines.
Technical Paper

Cyclically Resolved Flame and Flow Imaging in an SI Engine Operating with Future Ethanol Fuels

This work was concerned with study of the in-cylinder flow field and flame development in a spark ignition research engine equipped with Bowditch piston optical access. High-speed natural light (chemiluminescence) imaging and simultaneous in-cylinder pressure data measurement and analysis were used to understand the fundamentals of flame propagation for a variety of ethanol fuels blended with either gasoline or iso-octane. PIV was undertaken on the same engine in a motoring operation at a horizontal imaging plane close to TDC (10 mm below the fire face) throughout the compression stroke (30°,40°,90° and 180°bTDC) for a low load engine operating condition at 1500rpm/0.5 bar inlet plenum pressure. Up to 1500 cycles were considered to determine the ensemble average flow-field and turbulent kinetic energy. Finally, comparisons were made between the flame and flow experiments to understand the apparent interactions.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Technical Paper

Effect of Coolant Mixture Composition on Engine Heat Rejection Rate

The rate of heat rejection to the coolant system of an internal combustion engine depends upon coolant composition, among other factors, because this influences the coolant side heat transfer coefficient. The correlation developed by Taylor and Toong for heat transfer rate has been modified to account for this effect. The modification retains the gas-to-coolant passage thermal resistance implicit in the original correlation. The modified correlation gives predictions in agreement with experimental data. Compared to 100% water, mixtures of 50% ethylene glycol/50% water lower heat rejection rates by typically 5% and up to 25% in the extreme. This depends upon local conditions in the coolant circuit, which can give rise to different heat transfer regimes. Application of the modified correlation is outlined and illustrated.
Technical Paper

Exhaust System Heat Transfer and Catalytic Converter Performance

Three-way catalytic converters used on spark ignition engines have performance and durability characteristics which are effected by the thermal environment in which these operate. The design of the exhaust system and the location of the catalyst unit are important in controlling the range of thermal states the catalyst is exposed to. A model of system thermal behaviour has been developed to support studies of these. The exhaust system is modelled as connected pipe and junction elements with lumped thermal capacities. Heat transfer correlations for quasi-steady and transient conditions have been investigated. The catalytic converter is treated as elemental slices in series. Exothermic heat release and heat exchange between the monolith, mat, and shell are described in the model. A similar description is applied to lean NOx trap units.
Technical Paper

Factors Influencing Drive Cycle Emissions and Fuel Consumption

A method of predicting HC, CO and NOx emissions and fuel-used over drive cycles has been developed. This has been applied to FTP-75 and ECE+EUDC drive cycles amended to include cold-start and warm-up. The method requires only fully-warm steady state indicated performance data to be available for the engine. This is used in conjunction with a model of engine thermal behaviour and friction characteristics, and vehicle/drive cycle specifications enabling engine brake load/speed variations to be defined. A time marching prediction of engine-out emissions and fuel consumption is carried out taking into account factors which include high engine friction and poor mixture preparation after cold-start. Comparisons with experimental data indicate that fuel consumption and emissions can be predicted to quantitative accuracy. The method has been applied to compare and contrast the importance of various operating regimes during the two cycles.
Technical Paper

Fuel Film Evaporation and Heat Transfer in the Intake Port of an S.I. Engine

Surface heat transfer measurements have been taken in the intake port of a single cylinder four valve SI engine running on isooctane fuel. The objective has been to establish how fuel characteristics affect trends in surface heat transfer rates for a range of engine operating conditions. The heat transfer measurements were made using heat flux gauges bonded to the intake port surface in the region where highest rates of fuel deposition occur. The influence on heat transfer rates of the deposited fuel and its subsequent behaviour has been examined by comparing fuel-wetted and dry-surface heat transfer measurements. Heat transfer changes are consistent with trends predicted by convective mass transfer over much of the range of surface temperatures from 20°C to 100°C. Towards the upper temperature limit heat transfer reaches a maximum limited by the rate and distribution of fuel deposition.
Technical Paper

Fuel Transport Characteristics of Spark Ignition Engines for Transient Fuel Compensation

The fuel transfer characteristics of the intake port of a fuel-injected spark ignition engine have been determined for engine warm-up conditions following cold starts at temperature down to -30°C and extending to fully-warm states, using a method based upon perturbing fuel injection rate and recording AFR response. The variation of τ and x parameters over a range of temperatures, engine speeds, AFR, and engine loads has been evaluated. Temperature and speed have greatest influence, AFR and load effects are small. Application of the data to define transient fuel compensation requirements has been examined.
Technical Paper

Fuel Transport to the Crankcase, Oil Dilution and HC Return with Breather Flow During the Cold Operation of a SI Engine

Fuel losses to the crankcase, fuel/oil interactions, and fuel return as unburned hydrocarbons in the breather flow have been investigated. Hydrocarbons in the breather flow have been measured during motored and firing engine operation over a range of temperatures. Fuel desorption from the sump oil accounts for a small proportion of this. The major source is hydrocarbons transported past the piston with blowby. After a cold start, around 85% of these are retained in oil films below the ring pack. The recirculation of oil from the films to the sump contributes to bulk oil dilution. This appears to be the prime mechanism by which fuel is lost to oil dilution during cold operation. The mechanism becomes less effective as engine warm-up progresses. At fully-warm oil temperatures (∼100°C), only about 5% are removed from the blowby.