Refine Your Search

Topic

Search Results

Technical Paper

A Statistical Method for Damage Detection in Hydraulic Components

1995-09-01
952089
The detection and tracking of the damage process between surfaces in contact, together with an estimation of the remaining service life, are significant contributions to the efficient operation of hydraulic components. The commonly used approach of analyzing vibration signals in terms of spectral distributions, while being very effective, has some shortcomings. For example, the results are sensitive to both load and speed variations. The approach presented in this paper is based on the fact that the asperity distribution of surfaces in good condition have a near normal probability distribution. Deviation from this can be tracked using statistical moments. The Beta probability distribution provides a number of shapes, including normal, under the control of two positive numbers, α and β. Unlike the normal distribution, which indicates defects by kurtosis values higher than 3.0, the Beta distribution provides more flexibility.
Technical Paper

Application of Monte Carlo Analysis to Life Cycle Assessment

1999-03-01
1999-01-0011
Life Cycle Assessment (LCA) is commonly used to measure the environmental and economic impacts of engineering projects and/or products. However, there is some uncertainty associated with any LCA study. The LCA inventory analysis generally relies on imperfect data in addition to further uncertainties created by the assessment process itself. It is necessary to measure the effects that data and process uncertainty have on the LCA result and to communicate the level of uncertainty to those making decisions based on the LCA. To accomplish this, a systematic and rigorous means to assess the overall uncertainty in LCA results is required. This paper demonstrates the use of Monte Carlo Analysis to track and measure the propagation of uncertainty in LCA studies. The Monte Carlo technique basically consists of running repeated assessments using random input values chosen from a specified probable range.
Journal Article

Constitutive, Formability, and Fracture Characterization of 3rd Gen AHSS with an Ultimate Tensile Strength of 1180 MPa

2021-04-06
2021-01-0308
The superior formability and local ductility of the emerging class of third generation of advanced high-strength steels (3rd Gen AHSS) compared to their conventional counterparts of the same strength level offer significant advantages for automotive lightweighting and enhanced crash performance. Nevertheless, studies on the material behavior of 3rd Gen AHSS have been limited and there is some uncertainty surrounding the applicability of developed methodologies for conventional dual-phase (DP) steels to this new class of AHSS. The present paper provides a comprehensive study on the quasi-static and dynamic constitutive behavior, formability characterization and prediction, and the fracture behavior of two commercial 3rd Gen AHSS with an ultimate strength of 1180 MPa that will be contrasted with a conventional DP1180. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then validated with 3-D simulations of tensile tests.
Technical Paper

Crack Initiation and Propagation Fatigue Life Prediction for an A36 Steel Welded Plate Specimen

2019-04-02
2019-01-0538
Fatigue crack initiation and propagation models predict the fatigue life of welded "T" specimens tested by the Fatigue Design and Evaluation (FDE) Committee of SAE under constant and variable amplitude load histories. The crack propagation equations stipulated by British Standard BS-7910 have been incorporated in a material memory model for cyclic deformation. The simulations begin with the crack initiation model and show how it is used to account for cyclic mean stress relaxation and the effects of periodic overloads. After the cracks initiate the BS-7910 model is applied to predict the crack advance due to either constant or variable amplitude histories. Simulation results correspond to the experimental results with good accuracy.
Technical Paper

Crack Initiation and Propagation Predictions for ManTen and RQC-100 Steel Keyhole Notched Specimens Tested by the Fatigue Design & Evaluation Committee of SAE

2020-04-14
2020-01-0191
1 Crack initiation and propagation test data gathered during tests on Keyhole notched samples is used to evaluate a fatigue life prediction technique. Materials tested include a lower strength ManTen steel and a higher strength Boron steel, RQC-100, both tested with constant and variable amplitude histories. Initiation fatigue life is predicted using the usual method of plasticity correction at the notch followed by a Palmgren-Miner summation of damage with mean stress correction. The emphasis of the study is on simulating the crack propagation results. For that phase discretetize da/dN vs ΔK lines and thresholds for negative R ratios, are used specifically to help predict the propagation for one of the VA histories that had a significant negative mean. The open source crack propagation simulation program applies a material memory model to determine the crack advance on a reversal by reversal basis.
Technical Paper

Damage Characterization and Damage Percolation Modelling in Aluminum Alloy Sheet

2000-03-06
2000-01-0773
Tessellation methods have been applied to characterize second phase particle fields and the degree of clustering present in AA 5754 and 5182 automotive sheet alloys. A model of damage development within these materials has been developed using a damage percolation approach based on measured particle distributions. The model accepts tessellated particle fields in order to capture the spatial distributions of particles, as well as nearest neighbour and cluster parameter data. The model demonstrates how damage initiates and percolates within particle clusters in a stable fashion for the majority of the deformation history. Macro-cracking leading to final failure occurs as a chain reaction with catastrophic void linkage triggered once linkage beyond three or more clusters of voids takes place.
Technical Paper

Damage and Formability of AKDQ and High Strength DP600 Steel Tubes

2005-04-11
2005-01-0092
Using standard tensile testing methods, the material properties of AKDQ and DP600 steels tubes along the axial direction were determined. A novel in-situ optical strain mapping system ARAMIS® was utilized to evaluate the strain distribution during tensile testing along the axial direction. Microstructural and damage characterization was carried out using microscopy and image analysis techniques to compare the damage evolution and formability of both materials. Failure in both steels was observed to occur via a ductile failure mode. AKDQ was found to be the more formable material as it can achieve higher strains, total elongations and thinning prior to failure than the higher strength DP600.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Edge Formability and Material Characterization of Hot-Rolled Multiphase Steels

2014-04-01
2014-01-0992
New innovations in the field of advanced high strength steels (AHSS) have led to the development of steels with improved stretch-flangeability known as hot-rolled multi-phase (HR) steels. To understand the performance of HR steels, hole expansion tests were conducted on five prototype HR steels and compared with their commercial dual-phase (DP) steel equivalent. A variety of hole edge conditions were considered to study the influence of the shear-affected-zone (SAZ), the surface roughness at the sheared edge and the shear burr orientation. The microstructure of each material was characterized and discussed in relation to its formability for the different edge conditions. It was observed that the bainitic-ferrite microstructure of the HR steels showed superior formability during sheared edge stretching compared to commercial dual-phase steels.
Technical Paper

Effect of Bead Finish Orientation on Friction and Galling in the Drawbead Test

1992-02-01
920632
This study was undertaken to examine the role of tool finish orientation on the drawing of zinc-coated steel sheets. Beads of average roughnesses of 0.1 μm and 0.2 μm, finished parallel to and perpendicular to sliding, were used in the drawbead test. Lubrication was provided by unblended base oils of 4.5, 30, and 285 mm2/s @ 40°C, used neat and with a boundary additive, 1% stearic acid. Three types of coated sheet (galvannealed, electrogalvanized, and hot-dip galvanized) were compared to bare AKDQ steel sheet. Results show that lubricant viscosity had the greatest effect on friction, while bead finish orientation and coating type influenced the nature of metal transfer and the galling of the strip. Mixed-film lubrication dominated with the medium and heavy lubricants, here contact area and friction were reduced with increasing lubricant viscosity.
Technical Paper

Effect of Edge Finish on Fatigue Behavior of Thin Non-oriented Electrical Steel Sheets

2023-04-11
2023-01-0803
Strict environmental regulations are driving the automotive industry toward electric vehicles as they offer zero emissions. A key component in electric vehicles is the electric motor, where the stator and rotor are manufactured from stacks of thin electrical steel sheets. The electrical steel sheets can be cut in different ways, and the cutting methods may significantly affect the fatigue strength of the component. It is important to understand the effect of the cutting processes on the fatigue properties of electrical steel to ensure there is no premature failure of the electric motor resulting from an improper cutting process. This investigation compared the effect of three different edge preparation methods (stamping, CNC machining, and waterjet cutting) on the fatigue performance of 0.27mm thick electrical steel sheets. To investigate the effect of the edge finish on fatigue behavior, surface roughness was measured for these different samples.
Technical Paper

Effect of End-feed in Hydroforming of Straight and Pre-bent High Strength and Advanced High Strength Steel Tubes

2006-04-03
2006-01-0544
One of the major concerns preventing wider utilization of high strength steels (HSS) and advanced high strength steels (AHSS) in hydroforming is their inherent lower formability, compared to conventional mild steels. The application of the axial forces on the tube ends during a hydroforming operation is often referred to as end-feed, and can facilitate deformation of the tube by postponing failure. This research examines the effect of end-feed on the formability of HSS and AHSS tubes during hydroforming. Through simulation, straight and pre-bent tubes are hydroformed at different levels of end-feed for three materials: DDQ, HSLA350 and DP600.
Technical Paper

Effect of Endfeed on the Strains and Thickness During Bending and on the Subsequent Hydroformability of Steel Tubes

2003-10-27
2003-01-2837
This research examines the effect of endfeed on the thickness and strains during bending of steel tubes. The tubes were bent using an instrumented rotary draw tube bender and subsequently hydroformed into a diamond-profile outside corner fill die. DQAK tubes with an OD of 76.2 mm and a thickness of 1.55 mm were investigated. Endfeed during bending was found to have a significant effect on the thickness and strains within the tube after bending, and numerical models that were generated showed good agreement with the experimental data. It is shown how slight changes in thickness can cause localized failure during hydroforming, and how excessive die clearances can cause large strains in undesired areas.
Technical Paper

Effects of Bead Surface Preparation on Friction in the Drawbead Test

1991-02-01
910511
The effects of bead surface roughness on friction, die pickup, and sheet surface damage in the drawbead test were investigated. Beads of HRC 58 hardness were prepared from centerless-ground rod by circumferential honing to 0.05 μm roughness, followed by finishing with 100, 400, or 600 grit SiC paper in the axial direction. Paraffinic base oils with viscosities of 4.5, 30, and 285 mm2/s were used neat and in conjunction with stearic acid. The effects of bead roughness depended on the nature of metal transfer, especially its distribution and firmness of attachment. The presence of a boundary additive increased, decreased, or had no effect on friction depending on the particular coating and bead finish.
Technical Paper

Evaluation of Automobile Fluid Ignition on Hot Surfaces

2007-04-16
2007-01-1394
Automobile fires are a serious concern to manufacturers and consumers. However, understanding how the fires begin, in the confines of the engine compartment, is a difficult task. One known cause of fires is hot surface ignition (HSI) arising when engine fluids contact hot surfaces in the engine compartment or the exhaust train. In this study, the ignition of automotive gasoline on four hot surfaces: stainless and carbon steels from the heat shields, stainless steel from the exhaust manifold and cast iron cut from an intake manifold, was examined in a well-controlled, model study. Infra-red thermography and thermocouples were used to monitor surface temperatures prior to, during and after the fluid impacted the surface. This allowed evaluation and comparison of temperature evolution during fluid impact and the ignition event, resulting in an improved mechanistic understanding of the fluid/hot surface interaction.
Technical Paper

Evolution and Redistribution of Residual Stress in Welded Plates During Fatigue Loading

2022-03-29
2022-01-0257
The presence of residual stresses affects the fatigue response of welded components. In the present study of thick welded cantilever specimens, residual stresses were measured in two A36 steel samples, one in the as-welded condition, and one subjected to a short history of bending loads where substantial local plasticity is expected at the fatigue hot-spot weld toe. Extensive X-Ray Diffraction (XRD) measurements describe the residual stress state in a large region above the weld toe both in an untested as-welded sample and in a sample subjected to a short load history that generated an estimated 0.01 strain amplitude at the stress concentration zone at the weld toe. The results show that such a test will significantly alter the welding-induced residual stresses. Fatigue life prediction methods need to be aware that such alterations are possible and incorporate the effects of such cyclic stress relaxation in life computations.
Technical Paper

Fatigue Behavior of Stamped Electrical Steel Sheet at Room and Elevated Temperatures

2023-04-11
2023-01-0804
Electrical steels are silicon alloyed steels that possess great magnetic properties, making them the ideal material choice for the stator and rotor cores of electric motors. They are typically comprised of laminated stacks of thin electrical steel sheets. An electric motor can reach high temperatures under a heavy load, and it is important to understand the combined effect of temperature and load on the electrical steel’s performance to ensure the long life and safety of electric vehicles. This study investigated the fatigue strength and failure behavior of a 0.27mm thick electrical steel sheet, where the samples were prepared by a stamping process. Stress-control fatigue tests were performed at both room temperature and 150°C. The S-N curve indicated a decrease in the fatigue strength of the samples at the elevated temperature compared to the room temperature by 15-25 MPa in the LCF and HCF regimes, respectively.
Technical Paper

Fatigue Behaviour of Thin Electrical Steel Sheets at Room Temperature

2023-04-11
2023-01-0805
Electrical steel, also known as silicon steel, is a ferromagnetic material that is often used in electric vehicles (EVs) for stator and rotor applications. Since the design and manufacturing of rotors require the use of laminated thin electrical steel sheets, the fatigue characterization of these single sheets is of interest. In this study, a 0.27mm thick non-oriented electrical steel sheet was tested under cyclic loading in the load-controlled mode with the load ratio R = 0.1 at room temperature. The specimens were prepared using the Computer Numerical Control (CNC) machining method. The Smith-Watson-Topper mean stress correction was used to find the equivalent fully reversed stress-life (S-N) curve. The Basquin equation was used to describe the fatigue strength of the electrical steel and the fatigue parameters were extracted. Furthermore, a design curve with a reliability of 90% and a confidence level of 90% was generated using Owen’s Tolerance Limit method.
X