Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

An Investigation on the Regeneration of Lean NOX Trap Using Dimethyl Ether

2020-04-14
2020-01-1354
The ever-stringent emission regulations are major challenges for the diesel fueled engines in automotive industry. The applications of advanced after-treatment technologies as well as alternative fuels [1] are considered as promising methodology to reduce exhaust emission from compression ignition (CI) engines. Using dimethyl ether (DME) as an alternative fuel has been extensively studied by many researchers and automotive manufactures since DME has demonstrated enormous potential in terms of emission reduction, such as low CO emission, and soot and sulfur free. However, the effect of employing DME in a lean NOX trap (LNT) based after-treatment system has not been fully addressed yet. In this work, investigations of the long breathing LNT system using DME as a reductant were performed on a heated after-treatment flow bench with simulated engine exhaust condition.
Technical Paper

An Investigation on the Regeneration of Lean NOx Trap Using Ethanol and n-Butanol

2019-04-02
2019-01-0737
Reduction of nitrogen oxides (NOx) in lean burn and diesel fueled Compression Ignition (CI) engines is one of the major challenges faced by automotive manufacturers. Lean NOx Trap (LNT) and urea-based Selective Catalytic Reduction (SCR) exhaust after-treatment systems are well established technologies to reduce NOx emissions. However, each of these technologies has associated advantages and disadvantages for use over a wide range of engine operating conditions. In order to meet future ultra-low NOx emission norms, the use of both alternative fuels and advanced after-treatment technology may be required. The use of an alcohol fuel such as n-butanol or ethanol in a CI engine can reduce the engine-out NOx and soot emissions. In CI engines using LNTs for NOx reduction, the fuel such as diesel is utilized as a reductant for LNT regeneration.
X