Refine Your Search




Search Results

Technical Paper

A Classification of Reciprocating Engine Combustion Systems

Obtaining and maintaining a stratified charge in a practical engine is a difficult problem. Consequently, many approaches have been proposed and reported in the scientific and patent literature. In attempting to assess the most profitable approach for future development work, it is important to group together similar approaches so that one can study their performance as a group. Making such a classification has the additional advantage of helping to standardize terminology used by different investigators. With this thought in mind, a literature study was made and a proposed classification chart prepared for the different engine combustion systems reported in the literature. For the sake of completeness, the finally proposed classification chart includes homogeneous combustion engines as well as heterogeneous combustion engines. Because of their similarity of combustion, rotary engines such as the Wankel engine are considered as “reciprocating” although gas turbines are not included.
Technical Paper

A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines

A computer program which rapidly calculates the equilibrium mole fractions and the partial derivatives of the mole fractions with respect to temperature, pressure and equivalence ratio for the products of combustion of any hydrocarbon fuel and air is described. A subroutine is also given which calculates the gas constant, enthalpy, internal energy and the partial derivatives of these with respect to temperature, pressure and equivalence ratio. Some examples of the uses of the programs are also given.
Technical Paper

A Method for Estimating Mileage Improvement and Emission Reductions Achievable by Hybrid-Electric Vehicles

The results of two derivations relating to the fuel economy of hybrid-electric vehicles (vehicles which employ both a heat engine and electric drive system) are presented and their use is illustrated through the examples of the University of Wisconsin and TRW Systems Group hybrid-electric vehicles. The method of mileage estimation employs a specific fuel-consumption versus torque-speed map for the heat engine under study and knowledge of the hybrid-vehicle dynamics and road-load power. The method is easily extended to estimation of emission reductions through use of specific-emission-production versus torque-speed maps and is applicable to hybrid vehicles with other than electrical energy-storage systems.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Resistance Thermometer for Engine Compression Temperatures

Fine-wire resistance thermometers were used to measure compression gas temperatures in a motoring (nonfiring) cycle CFR engine. Temperature versus crankangle curves were obtained for the compression and expansion strokes by means of tungsten wires ranging in diameter from 0.15–1.00 mils and at speeds from 600–1800 rpm. The results were compared with the infrared pyrometer; the peak temperature and peak crankangle lags were determined as a function of the wire diameter and engine speed. Attempts to evaluate the instantaneous energy balance around the wire resulted in a negative heat transfer coefficient, for which no current satisfactory explanation is available, although other observers have reported similar phenomena. The tungsten resistance thermometer is simple to build, easy to install, and requires no modification of the engine block for use during motoring. Thus, it is suitable for comparing the compression temperatures of different design engines.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Technical Paper

A Tape Recording and Computer Processing System for Instantaneous Engine Data

The development of a high speed, multichannel data acquisition system is described. A precision magnetic tape recorder is used to record analog data from highly transient phenomena. Analog-to-digital data conversion is performed on a hybrid computer and the digitized data is processed using large, high speed digital computers. A detailed example of the application of the system to the measurement of rates-of-injection, rates-of-heat release, and instantaneous rates-of-heat transfer from the cylinder gases to the cylinder walls in a high speed open-chamber diesel engine is presented.
Technical Paper

A Triangulated Lagrangian Ignition Kernel Model with Detailed Kinetics for Modeling Spark Ignition with the G-Equation-Part I: Geometric Aspects

Modeling ignition kernel development in spark ignition engines is crucial to capturing the sources of cyclic variability, both with RANS and LES simulations. Appropriate kernel modeling must ensure that energy transfer from the electrodes to the gas phase has the correct timing, rate and locations, until the flame surface is large enough to be represented on the mesh by the G-Equation level-set method. However, in most kernel models, geometric details driving kernel growth are missing: either because it is described as Lagrangian particles, or because its development is simplified, i.e., down to multiple spherical flames. This paper covers the geometric aspects of kernel development, which makes up the core of a Triangulated Lagrangian Ignition Kernel model. One (or multiple, if it restrikes) spark channel is initialized as a one-dimensional Lagrangian particle thread.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

Aid of Digital Computer in the Analysis of Rigid Spring-Loaded Valve Mechanisms

A digital computer is used to calculate the free motion of the valve train of a riged valve mechanism, after jump-off from the cam profile, in order to verify the correctness of the assumptions made with regard to the friction, in the dynamic analysis of the mechanism. Close correlation between the calculated and experimentally measured valve motions appears to justify the linearization of the friction present in the mechanism.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Journal Article

Automatic Hex-Dominant Mesh Generation for Complex Flow Configurations

A method for automatically generating hex-dominant meshes for Computational Fluid Dynamics (CFD) applications is presented in this article. Two important regions of the mesh for any CFD simulation are the interior mesh and the boundary layer mesh. The interior mesh needs to be fine in the critical flow regions to ensure accurate solutions. The proposed method uses Bubble Mesh algorithm which packs bubbles inside the geometry to generate the mesh nodes. Algorithm was tested for sample flow problems and improvements were made to interior and boundary layer mesh generation methods. The interior mesh is generated using directionality and sizing control functions specified on the points of a 3D grid generated over the entire geometry. This offers a flexible control over mesh sizing and local mesh refinement. Boundary layer mesh is important to accurately model the physics of boundary layer near the geometry walls.
Technical Paper

Behavior of High- and Low-Cetane Diesel Fuels

THIS paper is a sequel of the paper, “Photo-Electric Combustion Analysis,” presented at the 1936 Semi-Annual Meeting of the Society. The indicator described in that paper has been used to study combustion of 28 fuels and chemicals. A complete table of information of the materials used as fuels is included. The results obtained from over 1000 oscillograms show a different shape of ignition-lag curve versus injection advance angle than it is ordinarily thought to have. Even though the cetane values for these 28 fuels varied from 24 to 100, they all had nearly the same ignition lag when injected near the dead-center position. This minimum value is shown to be about 1/1000 sec. The fuels of higher-cetane value reach this minimum at an earlier injection angle than do those of low-cetane value. The paper shows how a high-cetane fuel can be just as rough as a low-cetane fuel if the injection timing is too early.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Technical Paper

Comparative Small Engine Testing Using Hybrid Composite Cylinder Liners

Cylinder liners exert a major influence on engine performance, reliability, durability and maintenance. Various combinations of nonmetallic reinforcements and coatings have been used to improve the tribological performance of sleeves or surfaces used in compressors and internal combustion engines in four stroke, two stroke and rotary configurations. In this paper we report the use of a hybrid composite containing silicon carbide and graphite in an aluminum alloy matrix to improve the performance of various small engines and compressors. Material properties of the base material, as well as comparative dynamometer testing, are presented.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.