Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Injection Effects in Low Load RCCI Dual-Fuel Combustion

2011-09-11
2011-24-0047
Dual-fuel reactivity controlled compression ignition (RCCI) engine experiments were conducted with port fuel injection of isooctane and direct injection of n-heptane. The experiments were conducted at a nominal load of 4.75 bar IMEPg, with low isooctane equivalence ratios. Two sets of experiments explored the effects of direct injection timing with single and double injections, and multi-dimensional CFD modeling was used to explore mixture preparation and timing effects. The findings were that if fuel-liner impingement is to be avoided, double injections provide a 40% reduction in CO and HC emissions, resulting in a 1% increase in thermal efficiency. The second engine experiment showed that there is a linear relationship between reactivity (PRF number) and intake temperature. It was also found that if the premixed fuel fraction is above a certain limit, the high-temperature heat release (HTHR) can be manipulated by changing the global PRF number of the in-cylinder fuel blend.
Technical Paper

Temperature-Strength-Time Relationships in Mufflers and for Truck Muffler Materials

1957-01-01
570055
DATA presented in this paper show temperature-time diagrams obtained from mufflers mounted on trucks which were traveling over their regular routes. Using these temperature data, specimens made of possible muffler materials were subjected to laboratory tests. A wide range of possible muffler materials and gas composition were covered in these tests. Results of the tests indicate that under long-run heavy-duty truck service, muffler failure occurs primarily because of high metal temperatures and that coated mild steel showed the most promise of longer muffler life.
X