Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Investigation of Augmented Mixing Effects on Direct-Injection Stratified Combustion

2001-09-24
2001-01-3670
The effects of augmented mixing through the use of an auxiliary gas injection (AGI) were investigated in a direct-injection gasoline engine operated at a 22:1 overall air-fuel ratio, but with retarded injection timing such that the combustion was occurring in a locally rich mixture as evident by the elevated CO emissions. Two AGI gas compositions, nitrogen and air, were utilized, the gas supply temperature was ambient, and a wide range of AGI timings were investigated. The injected mass was less than 10% of the total chamber mass. The injection of nitrogen during the latter portion of the heat release phase resulted in a 25% reduction in the CO emissions. This reduction is considered to be the result of the increased mixing rate of the rich combustion products with the available excess air during a time when the temperatures are high enough to promote rapid oxidation.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Technical Paper

The Effects of Mixture Stratification on Combustion in a Constant-Volume Combustion Vessel

1998-02-01
980159
The role of mixture stratification on combustion rate has been investigated in a constant volume combustion vessel in which mixtures of different equivalence ratios can be added in a spatially and temporally controlled fashion. The experiments were performed in a regime of low fluid motion to avoid the complicating effects of turbulence generated by the injection of different masses of fluid. Different mixture combinations were investigated while maintaining a constant overall equivalence ratio and initial pressure. The results indicate that the highest combustion rate for an overall lean mixture is obtained when all of the fuel is contained in a stoichiometric mixture in the vicinity of the ignition source. This is the result of the high burning velocity of these mixtures, and the complete oxidation which releases the full chemical energy.
Technical Paper

Time-Resolved Emission Sampling in a Direct-Injection Engine

1999-09-28
1999-01-3309
Time-resolved measurements were made of the gas composition at the exhaust port of a direct-injection two-stroke engine operating at 2000 rpm and an air-fuel ratio of 30:1. A high-speed sampling valve capable of 1.0 ms (12 CAD) time resolution was used to collect samples 1 cm downstream of the exhaust port of the engine. The time-resolved NOx, CO2 and CO concentrations decreased continuously during the scavenging process due to the dilution by short-circuited air. The hydrocarbon emissions, however, behaved significantly differently from the other species. At the time of exhaust port opening the concentration was low, it reached a maximum value by BDC, then decreased slightly in the latter part of the scavenging event. The dilution rates calculated for the hydrocarbon data gave negative values, indicating that there was a significant production of hydrocarbons during the gas exchange period.
X