Refine Your Search

Topic

Author

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

A Study of Velocities and Turbulence Intensities Measured in Firing and Motored Engines

1987-02-01
870453
Laser Doppler velocimetry was used to make cycle-resolved velocity and turbulence measurements under motoring and firing conditions in a ported homogeneous charge S.I. engine. The engine had a flat pancake chamber with a compression ratio of 7.5. In one study, the effect of the intake velocity on TDC turbulence intensity was measured at 600, 1200, and 1800 rpm with three different intake flow rates at each speed. The TDC swirl ratio ranged from 2 to 6. The TDC turbulence intensities were found to be relatively insensitive to the intake velocity, and tended to scale more strongly with engine speed. For the combustion measurements, the engine was operated at 600, 1200, and 2400 rpm on stoichiometric and lean propane-air mixtures. Velocity measurements were made in swirling and non-swirling flows at several spatial locations on the midplane of the clearance height. The TDC swirl ratio was about 4. The measurements were made ahead, through, and behind the flame.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

1997-02-24
970353
The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Active Learning Optimization for Boundary Identification Using Machine Learning-Assisted Method

2022-03-29
2022-01-0783
Identifying edge cases for designed algorithms is critical for functional safety in autonomous driving deployment. In order to find the feasible boundary of designed algorithms, simulations are heavily used. However, simulations for autonomous driving validation are expensive due to the requirement of visual rendering, physical simulation, and AI agents. In this case, common sampling techniques, such as Monte Carlo Sampling, become computationally expensive due to their sample inefficiency. To improve sample efficiency and minimize the number of simulations, we propose a tailored active learning approach combining the Support Vector Machine (SVM) and the Gaussian Process Regressor (GPR). The SVM learns the feasible boundary iteratively with a new sampling point via active learning. Active Learning is achieved by using the information of the decision boundary of the current SVM and the uncertainty metric calculated by the GPR.
Technical Paper

Adapting Farm Equipment for Workers with Disabilities

2004-10-26
2004-01-2704
Farm workers experience a very high incidence of injuries leading to physical and cognitive (strokes, TBI) disabilities. Since 1991, the AgrAbility Project 2 and its staff have provided direct assistance and education to many U.S. farmers and farm workers. If farmers, ranchers or farm workers who become disabled continue to be employed in agriculture, often their agricultural operation must be modified and/or agricultural machinery must be modified or adaptive equipment purchased to meet their new needs. Some common tractor modifications include operator lifts, hand controls, added/modified steps and handrails, automated hitches, and custom seating. Some modifications are commercially available but others are done on an individual need basis. AgrAbility staff would welcome the opportunity to work closer with farm equipment manufacturers to create modifications that would make farming and ranching easier and safer for all.
Technical Paper

Air Entrainment in a High Pressure Diesel Spray

1997-05-01
971620
This paper presents some experimental results of air velocity measurements near high pressure diesel sprays. The measurements were made using a moderately high pressure (90 MPa) common rail injector in a pressurized spray chamber. The chamber was operated at ambient temperature (25°C) and was pressurized with Argon to produce a chamber gas density of about 27 kg/m3, similar to densities found in a large turbocharged diesel near TDC. The gas phase was tagged using water droplets doped with Stilbene 420, with an estimated droplet size of 18 μm. The atomized water-Stilbene droplets were illuminated with the third harmonic of a pair of Nd:YAG lasers which caused the Stilbene to fluoresce at about 420 nm. To reduce the competing fluorescence from the injected fuel, the injector was fueled with Jet-A fuel. Using the two lasers, double exposures of the small droplets were recorded on film. The laser pulse lengths were about 6 ns, and typical times between pulses were 100 μs.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2008-04-14
2008-01-1446
Current die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower edges. For common automotive exterior sheet, this translates to a gap less than 0.06mm. Unfortunately, the tolerances required by such standards often exceed the capabilities of many trim dies. The objective of the research described in this paper is to study the mechanisms of burrs generation and their impact on AHSS formability in stretch flanging. Experimental results on influence of trimming conditions on the shape of the sheared surface will be combined with the results of stretching strips after trimming.
Technical Paper

Analysis of a Neural Network Lateral Controller for an Autonomous Road Vehicle

1992-08-01
921561
Lateral control of a simulated vehicle in a simulated highway driving environment is explored. Three modules are used: a driving simulator, a visual preprocessor, and a neural network. The driving simulator, called RoadWay, is a three-dimensional computer graphics environment which supports interactive highway design and driving capabilities. The visual preprocessor, RoadVision, receives images from RoadWay, which represent forward-looking views from the cockpit of the simulated vehicle, and encodes these images using a family of oriented two-dimensional Gabor filters. Two Adaptive Resonance Theory neural network architectures, ART2 and ARTMAP, constituting the RoadBrain module, are employed to learn mappings between the visual encodings and emergent image categories, and then to associate these image categories with appropriate steering decisions.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Journal Article

Body Lightweight Design and Scalability with Structural Foam Solutions

2013-04-08
2013-01-0669
In this paper polymer structural foams are being investigated in body structure applications. There are two major polymer foam technologies for structural applications: the well-known epoxy based insert solutions and the PUR injection foams. Here we focus only on the PUR injection foams and its structural applications. It will be shown where such structural foams can be applied in the body structure in order to enable lightweight design or to scale the structural performance. Reliable CAE methods for crash simulation as well as several body structure application examples will be presented and evaluated.
Technical Paper

Characteristics of Air Flow Surrounding Non-Evaporating Transient Diesel Sprays

2000-10-16
2000-01-2789
Airflow characteristics surrounding non-evaporating transient diesel sprays were investigated using a 6-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized constant volume chamber at room temperature. The chamber gas densities in this study were 10 kg/m3, 20 kg/m3 and 30 kg/m3. The injection pressure was 96.5 MPa. Two frequency doubled (532 nm) Nd:YAG lasers were used to create coincident laser sheets to illuminate the test section at two instances after start of injection (ASI). The double exposed images of sprays and Al2O3 seed particles were developed and velocity vectors of the gas surrounding the transient diesel sprays were obtained using a numerical autocorrelation PIV method.
Technical Paper

Combustion Optimization Computations-Part I: Swirl and Squish Effects in Air-Assist Injection Engines

1992-10-01
922240
Results are presented of two-dimensional computations of air-assist fuel injection into engines with bowl-in-piston and bowl-in-head, with and without swirl and for early and late injection but without combustion. The general finding is that swirl tends to destroy the head vortex of the air/fuel jet and results in a faster collapse of the spray cone toward its axis. Faster collapse is also promoted by high density of the chamber gas (e.g. late injection) and bowl-in-head design (limited availability of chamber gas around the spray, presence of walls and delayed influence of squish by the injector). With enhanced collapse, fuel-rich regions are formed around the axis and away from the injector. With reduced collapse, the radial distribution of the fuel is more uniform. Thus swirl tends to lead to both slower vaporization and richer vapor mixtures. Also, with strong swirl the rich mixtures tend to end up by the injector; without swirl, by the piston.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Technical Paper

Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1995-02-01
950284
A second effort is reported to reproduce the distribution of fuel from a pulsating hollow-cone liquid-only poppet injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments. In a previous effort, the injector was assume to generate drop and the computed collapse of the spray was found to be too slow. In this work, the injector is assumed to generate liquid sheets that change shape and produce drops from their leading edges and surfaces as they propagate through the gas.
Technical Paper

Control of Grasping Force in Teleoperation Using Model Reference Adaptive Approach

1994-06-01
941440
The adaptation to changes in human operator dynamics and changes in working environment dynamics can be an important issue in designing high performance telerobotic systems. This paper describes an approach to force control in telerobotic hand systems in which model reference adaptive control techniques are used to adapt to changes in human operator and working environment dynamics. The techniques have been applied to force-reflective control of a single degree-of-freedom telerobotic gripper system at Wisconsin Center for Space Automation and Robotics (WCSAR). This adaptive gripping system is described in the paper along with results of experiments with human subjects in which the performance of the adaptive system was analysed and compared to the performance of a conventional non-adaptive system. These experiments emphasized adaptation to changes in compliance of gripped objects and adaptation to the on-set of human operator fatigue.
Technical Paper

Cycle-Resolved Velocity and Turbulence Measurements Near the Cylinder Wall of a Firing S.I. Engine

1986-10-01
861530
Laser Doppler velocimetry has been used to make cycle-resolved velocity and turbulence measurements in a homogeneous-charge, spark-ignition engine. The engine had a ported intake and disc-shaped chamber with a compression ratio of 7.5 to 1. It was operated at a speed of 1200 rpm and with a TDC swirl number of 4. A stoichiometric propane-air mixture was used, and ignition was near the wall. Measurements of the tangential velocity component were made in both firing and non-firing cycles at nine spatial locations along a radius 180 degrees downstream of the spark. The radial velocity component was also measured at four of the locations. All measurements were made in the center of the clearance height. Tangential component measurements were made as close as 0.5mm from the cylinder wall, and the radial component was measured as close as 1.5mm from the wall.
X