Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Technical Paper

A Comprehensive CFD-FEA Conjugate Heat Transfer Analysis for Diesel and Gasoline Engines

2019-04-02
2019-01-0212
As the efforts to push capabilities of current engine hardware to their durability limits increases, more accurate and reliable analysis is necessary to ensure that designs are robust. This paper evaluates a method of Conjugate Heat Transfer (CHT) analysis for a gasoline and a diesel engine that combines combustion Computational Fluid Dynamics (CFD), engine Finite Element Analysis (FEA), and cooling jacket CFD with the goal of obtaining more accurate temperature distribution and heat loss predictions in an engine compared to standard de-coupled CFD and FEA analysis methods. This novel CHT technique was successfully applied to a 2.5 liter GM LHU gasoline engine at 3000 rpm and a 15.0 liter Cummins ISX heavy duty diesel engine operating at 1250 rpm. Combustion CFD simulations results for the gasoline and diesel engines are validated with the experimental data for cylinder pressure and heat release rate.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Controls Overview on Achieving Ultra-Low NOx

2020-04-14
2020-01-1404
The California Air Resources Board (CARB)-funded Stage 3 Heavy-Duty Low NOX program focusses on evaluating different engine and after-treatment technologies to achieve 0.02g/bhp-hr of NOX emission over certification cycles. This paper highlights the controls architecture of the engine and after-treatment systems and discusses the effects of various strategies implemented and tested in an engine test cell over various heavy-duty drive cycles. A Cylinder De-Activation (CDA) system enabled engine was integrated with an advanced after-treatment controller and system package. Southwest Research Institute (SwRI) had implemented a model-based controller for the Selective Catalytic Reduction (SCR) system in the CARB Stage 1 Low-NOX program. The chemical kinetics for the model-based controller were further tuned and implemented in order to accurately represent the reactions for the catalysts used in this program.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

A New Approach to System Level Soot Modeling

2005-04-11
2005-01-1122
A procedure has been developed to build system level predictive models that incorporate physical laws as well as information derived from experimental data. In particular a soot model was developed, trained and tested using experimental data. It was seen that the model could fit available experimental data given sufficient training time. Future accuracy on data points not encountered during training was estimated and seen to be good. The approach relies on the physical phenomena predicted by an existing system level phenomenological soot model coupled with ‘weights’ which use experimental data to adjust the predicted physical sub-model parameters to fit the data. This approach has developed from attempts at incorporating physical phenomena into neural networks for predicting emissions. Model training uses neural network training concepts.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A New Methodology for Comparing Knock Mitigation Strategies and Their Stability Margin

2023-04-11
2023-01-0248
The automotive sector is rapidly transitioning to decarbonized, electric vehicles solutions. However, due to challenges with such rapid adoption, Internal combustion engines (ICE) are expected to be used for decades to come. In this transition period it is important to continue to improve ICE efficiency. A key design parameter to increase ICE efficiency is the compression ratio. For gasoline engines, the compression ratio is limited so as to avoid knock. Engine designers can employ several strategies to mitigate knock and enable higher compression ratios. In this study, a new methodology has been developed to compare various knock mitigation strategies. By comparing the knock limited load at a given combustion phasing the expected compression ratio increase can be inferred.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
X