Refine Your Search

Topic

Author

Search Results

Technical Paper

A Clean, Quiet, Environmentally Friendly Snowmobile

2002-10-21
2002-01-2763
In an attempt to reach a compromise between the views of environmentalists and snowmobile enthusiasts, the University of Wisconsin-Madison Clean Snowmobile Team set out to design a machine that maintains performance while decreasing air and noise pollution. After careful consideration of all possible design avenues, the decision was made to select a four-stroke power plant. In order to optimize the engine's efficiency, an engine control unit was chosen that was both capable and affordable. Engine modifications were made to allow the snowmobile's stock transmission to be used. Alterations were also made to intake, exhaust, and cooling systems to allow the engine to fit comfortably under the snowmobile's stock hood. Modifications were made to the snowmobile's chassis to accommodate the additional mass associated with the four-stroke engine. The final product is a snowmobile that minimizes environmental impact but still has the appearance and performance necessary to satisfy consumers.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Co-Simulation Framework for Full Vehicle Analysis

2011-04-12
2011-01-0516
The paper describes a methodology to co-simulate, with high fidelity, simultaneously and in one computational framework, all of the main vehicle subsystems for improved engineering design. The co-simulation based approach integrates in MATLAB/Simulink a physics-based tire model with high fidelity vehicle dynamics model and an accurate powertrain model allowing insights into 1) how the dynamics of a vehicle affect fuel consumption, quality of emission and vehicle control strategies and 2) how the choice of powertrain systems influence the dynamics of the vehicle; for instance how the variations in drive shaft torque affects vehicle handling, the maximum achievable acceleration of the vehicle, etc. The goal of developing this co-simulation framework is to capture the interaction between powertrain and rest of the vehicle in order to better predict, through simulation, the overall dynamics of the vehicle.
Technical Paper

A Matrix-Based Porous Tube Water and Nutrient Delivery System

1992-07-01
921390
A system was developed which provides nutrients and water to plants while maintaining good aeration at the roots and preventing water from escaping in reduced gravity. The nutrient solution is circulated through porous tubes under negative pressure and moves through the tube wall via capillary forces into the rooting matrix, establishing a non-saturated condition in the root zone. Tests using prototypes of the porous tube water and nutrient delivery system indicate that plant productivity in this system is equivalent to standard soil and solution culture growing procedures. The system has functioned successfully in short-term microgravity during parabolic flight tests and will be flown on the space shuttle. Plants are one of the components of a bioregenerative life support system required for long duration space missions.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Journal Article

A Study of the Ditch Fall-over Test Method Using Numerical Simulation

2012-04-16
2012-01-0094
Rollover tests are performed to design the algorithms for deployment of countermeasures to mitigate occupant ejection in rollover situations. The ditch fall-over test is one of the rollover test methods in which a vehicle on a steep slope, representing a ditch embankment, is subjected to a forced steering operation that results in a turnover. An accurate prediction method is needed to determine the specifications of the ditch fall-over test equipment and test conditions because a test-based trial-and-error process involves high cost of performing repeated experiments and preperation for various types of related test equipment. This paper presents a newly developed numerical simulation method for simulating vehicle behavior in ditch fall-over tests.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

1997-02-24
970353
The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

Air Entrainment in a High Pressure Diesel Spray

1997-05-01
971620
This paper presents some experimental results of air velocity measurements near high pressure diesel sprays. The measurements were made using a moderately high pressure (90 MPa) common rail injector in a pressurized spray chamber. The chamber was operated at ambient temperature (25°C) and was pressurized with Argon to produce a chamber gas density of about 27 kg/m3, similar to densities found in a large turbocharged diesel near TDC. The gas phase was tagged using water droplets doped with Stilbene 420, with an estimated droplet size of 18 μm. The atomized water-Stilbene droplets were illuminated with the third harmonic of a pair of Nd:YAG lasers which caused the Stilbene to fluoresce at about 420 nm. To reduce the competing fluorescence from the injected fuel, the injector was fueled with Jet-A fuel. Using the two lasers, double exposures of the small droplets were recorded on film. The laser pulse lengths were about 6 ns, and typical times between pulses were 100 μs.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Technical Paper

Characteristics of Air Flow Surrounding Non-Evaporating Transient Diesel Sprays

2000-10-16
2000-01-2789
Airflow characteristics surrounding non-evaporating transient diesel sprays were investigated using a 6-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized constant volume chamber at room temperature. The chamber gas densities in this study were 10 kg/m3, 20 kg/m3 and 30 kg/m3. The injection pressure was 96.5 MPa. Two frequency doubled (532 nm) Nd:YAG lasers were used to create coincident laser sheets to illuminate the test section at two instances after start of injection (ASI). The double exposed images of sprays and Al2O3 seed particles were developed and velocity vectors of the gas surrounding the transient diesel sprays were obtained using a numerical autocorrelation PIV method.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Technical Paper

Comparison of Soot Processes Inside Turbulent Acetylene Flames under Atmospheric-Pressure Conditions

2006-04-03
2006-01-0885
Two soot-containing turbulent non-premixed flames burning gaseous acetylene in atmospheric-pressure air were investigated by conducting non-intrusive optical experiments at various flame locations. The differences in burner exit Reynolds numbers of these flames were large enough to examine the influence of flow dynamics on soot formation and evolution processes in heavily-sooting flames. By accounting for the fractal nature of aggregated primary particles (spherules), the proper interpretation of the laser scattering and extinction measurements yielded all the soot parameters of principal interest. With the separation of spherule and aggregate sizes, the axial zones of the prevailing turbulent soot mechanisms were accurately identified. With the high propensity of acetylene fuel to soot, relatively fast particle nucleation process led to high concentrations immediately above the burner exit.
Technical Paper

Control and Monitoring of Environmental Parameters in the ASTROCULTURE™ Flight Experiment

1995-07-01
951627
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test and integrate subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Flights on the Space Shuttle have demonstrated control of water movement through a particulate rooting material, growth chamber temperature and humidity control, LED lighting systems and control, recycling of recovered condensate, ethylene scrubbing, and carbon dioxide control. A complete plant growth unit was tested on STS-63 in February 1995, the first ASC flight in which plant biology experiments were conducted in microgravity. The methods and objectives used for control of environmental conditions in the ASC unit are described in this paper.
Technical Paper

Control of Grasping Force in Teleoperation Using Model Reference Adaptive Approach

1994-06-01
941440
The adaptation to changes in human operator dynamics and changes in working environment dynamics can be an important issue in designing high performance telerobotic systems. This paper describes an approach to force control in telerobotic hand systems in which model reference adaptive control techniques are used to adapt to changes in human operator and working environment dynamics. The techniques have been applied to force-reflective control of a single degree-of-freedom telerobotic gripper system at Wisconsin Center for Space Automation and Robotics (WCSAR). This adaptive gripping system is described in the paper along with results of experiments with human subjects in which the performance of the adaptive system was analysed and compared to the performance of a conventional non-adaptive system. These experiments emphasized adaptation to changes in compliance of gripped objects and adaptation to the on-set of human operator fatigue.
Technical Paper

Design and Construction of a High-Bandwidth Hydrostatic Dynamometer

1993-03-01
930259
A hydrostatic dynamometer capable of accurately controlling the speed and torque of an engine has been designed and constructed. The thrust of this work is not only to build a better dynamometer, it is the first step in creating a system for laboratory simulation of the actual load environment of engines and powertrains. This paper presents the design, construction, and evaluation of a hydrostatic dynamometer. The evaluation includes speed and torque limits, and bandwidth of the dynamometer. Also, the dynamometer is compared with those in common use, and the feasibility of accurately reproducing the engine or powertrain load environments are assessed. This is the first phase of a development program; future research is discussed.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-04-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
Technical Paper

Design and Testing of a Prototype Midsize Parallel Hybrid-Electric Sport Utility

2004-10-25
2004-01-3062
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
X