Refine Your Search



Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Co-Simulation Framework for Full Vehicle Analysis

The paper describes a methodology to co-simulate, with high fidelity, simultaneously and in one computational framework, all of the main vehicle subsystems for improved engineering design. The co-simulation based approach integrates in MATLAB/Simulink a physics-based tire model with high fidelity vehicle dynamics model and an accurate powertrain model allowing insights into 1) how the dynamics of a vehicle affect fuel consumption, quality of emission and vehicle control strategies and 2) how the choice of powertrain systems influence the dynamics of the vehicle; for instance how the variations in drive shaft torque affects vehicle handling, the maximum achievable acceleration of the vehicle, etc. The goal of developing this co-simulation framework is to capture the interaction between powertrain and rest of the vehicle in order to better predict, through simulation, the overall dynamics of the vehicle.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Modular HMMWV Dynamic Powertrain System Model

A dynamic powertrain system model of the High Mobility Multi-Wheeled Vehicle (HMMWV) was created in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison. Simulink graphical programming software was used to create the model. This dynamic model includes a Torsen differential model and a Hyrda-matic 4L80-E automatic transmission model as well as several other powertrain component models developed in the PCRL. Several component inertias and shaft stiffnesses are included in the dynamic model. The concepts of modularity, flexibility, and user-friendliness were emphasized during model development so that the system model would be a useful design tool. Simulation results from the model are shown.
Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Journal Article

A Study of the Ditch Fall-over Test Method Using Numerical Simulation

Rollover tests are performed to design the algorithms for deployment of countermeasures to mitigate occupant ejection in rollover situations. The ditch fall-over test is one of the rollover test methods in which a vehicle on a steep slope, representing a ditch embankment, is subjected to a forced steering operation that results in a turnover. An accurate prediction method is needed to determine the specifications of the ditch fall-over test equipment and test conditions because a test-based trial-and-error process involves high cost of performing repeated experiments and preperation for various types of related test equipment. This paper presents a newly developed numerical simulation method for simulating vehicle behavior in ditch fall-over tests.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

Air Entrainment in a High Pressure Diesel Spray

This paper presents some experimental results of air velocity measurements near high pressure diesel sprays. The measurements were made using a moderately high pressure (90 MPa) common rail injector in a pressurized spray chamber. The chamber was operated at ambient temperature (25°C) and was pressurized with Argon to produce a chamber gas density of about 27 kg/m3, similar to densities found in a large turbocharged diesel near TDC. The gas phase was tagged using water droplets doped with Stilbene 420, with an estimated droplet size of 18 μm. The atomized water-Stilbene droplets were illuminated with the third harmonic of a pair of Nd:YAG lasers which caused the Stilbene to fluoresce at about 420 nm. To reduce the competing fluorescence from the injected fuel, the injector was fueled with Jet-A fuel. Using the two lasers, double exposures of the small droplets were recorded on film. The laser pulse lengths were about 6 ns, and typical times between pulses were 100 μs.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Technical Paper

An Application of Cluster Analysis to Dummy Injury Readings in a Frontal Crash

Public concern about the crashworthiness of vehicles has been continuously rising in recent years. Crashworthiness is evaluated under various crash configurations, including frontal collisions, in regulatory testing and in New Car Assessment Programs. Accordingly, vehicle manufacturers must deploy sophisticated product development strategies and redouble their engineering efforts in order to develop vehicles that satisfy the specified requirements for crashworthiness. Computer simulation is one effective approach to resolving this issue in that it provides a valuable tool for conducting multiple parameter studies and iterations in a short period of time. However, it is no easy task for CAE engineers to analyze the large volumes of calculation results obtained in frontal crash simulations and to understand the phenomena involved.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

Characteristics of Air Flow Surrounding Non-Evaporating Transient Diesel Sprays

Airflow characteristics surrounding non-evaporating transient diesel sprays were investigated using a 6-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized constant volume chamber at room temperature. The chamber gas densities in this study were 10 kg/m3, 20 kg/m3 and 30 kg/m3. The injection pressure was 96.5 MPa. Two frequency doubled (532 nm) Nd:YAG lasers were used to create coincident laser sheets to illuminate the test section at two instances after start of injection (ASI). The double exposed images of sprays and Al2O3 seed particles were developed and velocity vectors of the gas surrounding the transient diesel sprays were obtained using a numerical autocorrelation PIV method.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Technical Paper

Comparison of Soot Processes Inside Turbulent Acetylene Flames under Atmospheric-Pressure Conditions

Two soot-containing turbulent non-premixed flames burning gaseous acetylene in atmospheric-pressure air were investigated by conducting non-intrusive optical experiments at various flame locations. The differences in burner exit Reynolds numbers of these flames were large enough to examine the influence of flow dynamics on soot formation and evolution processes in heavily-sooting flames. By accounting for the fractal nature of aggregated primary particles (spherules), the proper interpretation of the laser scattering and extinction measurements yielded all the soot parameters of principal interest. With the separation of spherule and aggregate sizes, the axial zones of the prevailing turbulent soot mechanisms were accurately identified. With the high propensity of acetylene fuel to soot, relatively fast particle nucleation process led to high concentrations immediately above the burner exit.