Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Diffusion Supporting Passive Filter Regeneration- A Modeling Contribution on Coated Filters

2018-04-03
2018-01-0957
Wall flow particulate filters have been used as a standard exhaust aftertreatment device for many years. The interaction of particulate matter (PM) regeneration and catalytically supported reactions strongly depends on the given operating conditions. Temperature, species concentration and mass flow cause a change from advective to diffusive-controlled flow conditions and influence the rate controlling dominance of individual reactions. A transient 1D+1D model is presented considering advective and diffusive transport phenomena. The reaction scheme focuses on passive PM conversion and catalytic oxidation of NO. The model is validated with analytical references. The impact of back-diffusion is explored simulating pure advective and combined advective diffusive species transport. Rate approaches from literature are applied to investigate PM conversion at various operating conditions.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Effects of Pulsating Flow on Exhaust Port Flow Coefficients

1999-03-01
1999-01-0214
Five very different exhaust ports of diesel and gasoline engines are investigated under steady and unsteady flow to determine whether their flow coefficients are sensitive to unsteady flow. Valve lift is fixed for a specific test but varied from test to test to determine whether the relationship between steady and unsteady flow is lift dependent. The pulse frequency is chosen to correspond to the blow-down phase of an engine running at approximately 6000 rpm, but the pressure drop across the port is much smaller than that present in a running engine. Air at room temperature is used as the working fluid. It is shown that unsteady flow through the five exhaust ports causes, at most, a 6% increase or a 7% decrease in flow coefficient.
Technical Paper

Fast Charging at Cold Conditions—Model-Based Control Enabled by Multi-Scale Multi-Domain Plant Model

2022-03-29
2022-01-0702
Fast charging of batteries at cold conditions faces the challenge of promoting undesired cell degradation phenomena such as lithium plating. The occurrence of lithium plating is strongly related to local surface potentials and temperatures involving the scales of the electrode surface, the unit cell and the entire module or pack. A multi-scale, multi-domain model is presented, enhancing a Newman based unit cell model with consistent models for heat generation and lithium plating and integrating this 1D+1D approach into a thermal 3D model on module level. The basic equations are presented and three different plating models from literature are discussed. The thermal model is assessed in open-loop simulations and the different plating approaches are compared in charge/discharge simulations at different operating conditions. The full multi-scale, multi-domain model is applied as a virtual sensor for model-based control of fast charging at cold conditions.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

High load Operation of Lithium-Ion Batteries – Modeling Study on a LiFePO4 Graphite Cell

2024-04-09
2024-01-2193
Modeling of lithium iron phosphate electrodes calls for appropriate extensions of established model approaches. An electrochemical pseudo two-dimensional and a single-particle model are enhanced to address the phase separating behavior of this material with a variable solid state diffusion model. A particle size distribution model tackles the heterogeneity of the electrode microstructure. Both models are embedded in a framework to describe multi-layer electrode designs featuring segregated material properties. The models are parameterized following literature replicating a good match with measured discharge curves at low, medium and high currents. A simplified version of the rigorous model shows the effort of reparameterization, the computational advantage of model order reduction techniques, the model accuracy and application scope.
Technical Paper

Low Frequency Impedance Spectroscopy – Modeling Study on the Transferability of Solid Diffusion Coefficients

2023-04-11
2023-01-0505
This work elaborates the transferability of electrode diffusion coefficients gained from fitting procedures in frequency domain to an electrochemical battery model run in time domain. An electrochemical battery model of an NMC622 half-cell electrode is simulated with sinusoidal current excitations at different frequencies. The current and voltage signals are analyzed in frequency domain via Nyquist and Bode plots. The frequency domain analysis of time domain simulations is applied to assess the numerical convergence of the simulation and the sensitivity on particle diameter, electrode and electrolyte diffusion coefficients. The simulated frequency spectra are used to fit the electrode diffusion coefficient by means of different electrical equivalent circuit models and the electrochemical battery model itself. The fitted diffusion coefficients from the different electrical equivalent circuit models deviate by one order of magnitude from the a priori known reference data.
Technical Paper

Modeling of Reactive Spray Processes in DI Diesel Engines

2017-03-28
2017-01-0547
Commonly, the spray process in Direct Injection (DI) diesel engines is modeled with the Euler Lagrangian discrete droplet approach which has limited validity in the dense spray region, close to the injector nozzle hole exit. In the presented research, a new reactive spray modelling method has been developed and used within the 3D RANS CFD framework. The spray process was modelled with the Euler Eulerian multiphase approach, extended to the size-of-classes approach which ensures reliable interphase momentum transfer description. In this approach, both the gas and the discrete phase are considered as continuum, and divided into classes according to the ascending droplet diameter. The combustion process was modelled by taking into account chemical kinetics and by solving general gas phase reaction equations.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper

Modelling the Knocking Combustion of a Large Gas Engine Considering Cyclic Variations and Detailed Reaction Kinetics

2014-10-13
2014-01-2690
The combustion efficiency of large gas engines is limited by knocking combustion. Due to fact that the quality of the fuel gas has a high impact on the self-ignition of the mixture, it is the aim of this work to model the knocking combustion for fuel gases with different composition using detailed chemistry. A cycle-resolved knock simulation of the fast burning cycles was carried out in order to assume realistic temperatures and pressures in the unburned mixture Therefore, an empirical model that predicts the cyclic variations on the basis of turbulent and chemical time scales was derived from measured burn rates and implemented in a 1D simulation model. Based on the simulation of the fast burning engine cycles the self-ignition process of the unburned zone was calculated with a stochastic reactor model and correlated to measurements from the engines test bench. A good agreement of the knock onset could be achieved with this approach.
Technical Paper

New Fuel Mass Flow Meter - A Modern and Reliable Approach to Continuous and Accurate Fuel Consumption Measurement

2000-03-06
2000-01-1330
Over the past few years, the fuel mass measurement gained in importance to record the consumed fuel mass and the specific fuel consumption [g/kWh] with high accuracy. Measuring instruments, such as positive displacement meters, methods based on the burette or the Wheatstone bridge mass flow meter measure either the volumetric flow and a temperature-dependant fuel density correction is necessary or they have old technology and therefore poor accuracy and repeatability. A new-generation Coriolis sensor featuring an ideal measurement range for engine test beds but still with flow depending pressure drop has been integrated in a fuel meter to ensure that no influence is given to the engine behaviour for example after engine load change. The new Coriolis meter offers better accuracy and repeatability, gas bubble venting and easy test bed integration. For returnless fuel injection systems the fuel system supplies the fuel pressure.
Technical Paper

Parameterization of an Electrochemical Battery Model Using Impedance Spectroscopy in a Wide Range of Frequency

2024-04-09
2024-01-2194
The parameterization of the electrochemical pseudo-two-dimensional (P2D) model plays an important role as it determines the acceptance and application range of subsequent simulation studies. Electrochemical impedance spectroscopy (EIS) is commonly applied to characterize batteries and to obtain the exchange current density and the solid diffusion coefficient of a given electrode material. EIS measurements performed with frequencies ranging from 1 MHz down to 10 mHz typically do not cover clearly isolated solid state diffusion processes of lithium ions in positive or negative electrode materials. To extend the frequency range down to 10 μHz, the distribution function of relaxation times (DRT) is a promising analysis method. It can be applied to time-domain measurements where the battery is excited by a current pulse and relaxed for a certain period.
Journal Article

Simulation Process for the Acoustical Excitation of DC-Link Film Capacitors in Highly Integrated Electrical Drivetrains

2020-09-30
2020-01-1500
The advancing electrification of the powertrain is giving rise to new challenges in the field of acoustics. Film capacitors used in power electronics are a potential source of high-frequency interfering noise since they are exposed to voltage harmonics. These voltage harmonics are caused by semiconductor switching operations that are necessary to convert the DC voltage of the battery into three-phase alternating current for an electrical machine. In order to predict the acoustic characteristics of the DC-link capacitor at an early stage of development, a multiphysical chain of effects has to be addressed to consider electrical and mechanical influences. In this paper, a new method to evaluate the excitation amplitude of film capacitor windings is presented. The corresponding amplitudes are calculated via an analytical strain based on electromechanical couplings of the dielectric within film capacitors.
Technical Paper

Simulation and Application of Lightweight Damping Sandwich Material for I.C. Engines

2018-06-13
2018-01-1565
Making lighter engines is in the agenda of all OEMs in order to make their cars lighter and to reduce CO2 emission based on regulations. On the other hand, the noise regulations are getting more stringent and the customer impression of interior sounds is still an important aspect in vehicle development. Vehicle noise legislation has been revised numerous times since it was first established in February 1970. The latest revision in EU legislation introduces a revised test method which is used to enforce diminishing noise limits in three phases (EU Regulation No. 540/2014). Since 2016 the noise limit for passenger cars has been 72 dB(A). It will be reduced to 70 dB(A) in 2020 and to 68 dB(A) in 2024. These vehicle pass by noise limits cascade down to limitations on engine noise. New engine designs face a trade-off between a lightweight design and fulfilling the NVH targets. The conventional design updates are done by adding ribs and usually mass to the engine.
Technical Paper

Specialised Gear Rig for the Assessment of Loaded Transmission Error, Line of Action and Summarized Mesh Point

2023-04-11
2023-01-0463
Within gear pair development, the simulation of loaded transmission error, line of action and summarized mesh point are crucial information in design optimization as well as reliability, NVH and efficiency prediction. These properties and variables are difficult to evaluate and are usually only assessed through proxy-variables such as unloaded transmission error or contact pattern assessment. Alternatively, large design loops can be generated when prototypes are produced to directly assess the results of reliability, NVH and efficiency and simulation models updated to the results, but not directly calibrated. This work will showcase an advanced test facility with the unique capabilities to evaluate all gear contact types (including hypoid, beveloid, cylindrical and spiral) under loaded conditions while assessing position and force data that can be used to validate simulation models directly and enhance design development.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
X