Refine Your Search

Topic

Author

Search Results

Technical Paper

A Correlation Study of Computational Techniques to Model Engine Air Induction System Response Including BEM, FEM and 1D Methods

2003-05-05
2003-01-1644
Induction noise, which radiates from the open end of the engine air induction system, can be of significant importance in reducing vehicle interior noise and tuning the interior sound to meet customer expectations. This makes understanding the source noise critical to the development of the air induction system and the vehicle interior sound quality. Given the ever-decreasing development times, it is highly desirable to use computer-aided engineering (CAE) tools to accelerate this process. Many tools are available to simulate induction noise or, more generally, duct acoustics. The tools vary in degrees of complexity and inherent assumptions. Three-dimensional tools will account for the most general of geometries. However, it is also possible to model the duct acoustics with quasi-three-dimensional or one-dimensional tools, which may be faster as well.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

A Dynamic Model of Automotive Air Conditioning Systems

2005-04-11
2005-01-1884
A dynamic computer model of automotive air conditioning systems was developed. The model uses simulation software for the coding of 1-D heat transfer, thermodynamics, fluid flow, and control valves. The same software is used to model 3-D solid dynamics associated with mechanical mechanisms of the compressor. The dynamics of the entire AC system is thus simulated within the same software environment. The results will show the models potential applications in component and system design, calibration and control.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Real Time Statistical Method for Engine Knock Detection

2007-04-16
2007-01-1507
The traditional method of engine knock detection is to compare the knock intensity with a predetermined threshold. The calibration of this threshold is complex and difficult. A statistical knock detection method is proposed in this paper to reduce the effort of calibration. This method dynamically calculates the knock threshold to determine the knock event. Theoretically, this method will not only adapt to different fuels but also cope with engine aging and engine-to-engine variation without re-calibration. This method is demonstrated by modeling and evaluation using real-time engine dynamometer test data.
Technical Paper

A Scalable Engine Management System Architecture for Motorcycle/Small-Vehicle Application

2008-09-09
2008-32-0054
This paper gives an overview of a scalable engine management system architecture for motorcycle and other small engine based vehicle applications. The system can accommodate any engine sizes and up to four cylinders. The architecture incorporates advanced functionalities such as oxygen sensing, closed loop fueling, wall-wetting compensation, purge control, start & idle control and deceleration fuel cut-off. Additionally, a number of vehicle-related controls are integrated in the system. Diagnostic and safety related features have also been incorporated with limp-home capability. The software architecture is compatible with different hardware solutions. The system has been implemented in several OEM vehicles around the globe and meets EURO-3 emission requirements.
Technical Paper

A Study on the Strength of Catalytic Converter Ultra Thin Wall Substrates

2003-03-03
2003-01-0662
Application of Ultra Thin Wall (UTW) ceramic substrates in the catalytic converter system requires the canner and component manufacturers to better understand the root cause and physics behind substrate breakage during the canning process. For this purpose, a ceramic substrate strength study for shoebox design has been conducted within Visteon Corporation. Computer Numerical Control (CNC) machined top and bottom fixtures, with identical inner surfaces as shoebox converter upper and lower shells, were used to crush mat wrapped substrates. Thin film pressure sensor technology enables the recording of substrate surface pressure during the compression process. Shell rib, washcoat, canning speed and cell density effects on substrate failure have been experimentally investigated. The development of a mathematical model helps to identify a better indicator to evaluate the substrate strength in the canning process and establish the strength for uncoated & coated substrates.
Technical Paper

A Virtual Testing Methodology for Automotive Concept Product Design

2002-03-04
2002-01-1176
The process for accurately estimating product reliability early in the development process can be a difficult and costly task. Traditional methods like Reliability Prediction Models and Life Testing Strategies yield beneficial results when relative information is known about the product that is to be analyzed. When there is minimal information known (prior failure rates…) such a new concept design these above reliability methods have limitations. For these cases a Virtual Testing Strategies have proven to yield valuable results. This paper will demonstrate a reliability analysis procedure for a new automotive concept design. This analysis procedure composes of a mathematical model, model validation, parameter diagram, design of experiment (DOE), response surface, and optimization.
Technical Paper

Accelerated Life Cycle Development for Electronic Throttle Control Software using Model-Based/Auto-Code Technology

2004-03-08
2004-01-0276
The purpose of this paper is to demonstrate our success in taking advantage of model-based development tools and auto-code technology to accelerate the typical life cycle development of powertrain software. In particular, we applied the technology as a clean sheet approach to Visteon's third generation Electronic Throttle Control system. In the process of applying model-based development and 100% auto-code, we identified various pitfalls and created solutions to overcome the gap between technology and development process during each phase of the entire software development life cycle. We will share our lessons learned during the requirement, design, implementation, and validation stages.
Technical Paper

Accelerated Useful Life Testing and Field Correlation Methods

2002-03-04
2002-01-1175
The purpose of this paper is to present a common sense practical method for establishing and demonstrating reliability objectives. In particular, this paper will: describe an operational definition of “useful life”, describe an accelerated laboratory test procedure for demonstrating that products meet the useful life objective, and describe a method for demonstrating correlation between customer usage and laboratory testing.
Technical Paper

Aligning Human-System Integration and Systems Engineering

2004-10-18
2004-21-0021
One challenge facing automotive product development teams is the inclusion of the Human System Integration (HSI) community – consisting of human factors professionals, graphic and industrial designers, rapid prototyping software engineers, electronic hardware engineers, and systems engineers – in the Product Development Process (PDP). In order to achieve this integration, Visteon looked to the methods of systems engineering currently employed throughout the PDP. Overlaying the HSI process with an accepted systems engineering process description known as the N2 (N-squared) chart resulted in the outlining of expected inputs to the HSI process team, definitions of processes undertaken by the team, and expected outputs of those processes.
Technical Paper

An Integrated System Life Cycle-Based Risk Management Methodology

2002-03-04
2002-01-0145
A new risk management method, the System Integrated Life Cycle Risk Management Methodology (SILC RMM), is based on systems engineering principles and is compatible with current standards. The SILC method, created by automotive engineers, addresses shortcomings with FMEA and other risk management (RM) methods, and integrates the FMEA and risk management functions into day-to-day engineering project activities. The SILC approach accommodates technology, cost, schedule, environmental and safety risks throughout the systems engineering project life cycle - from conception to recycle. It allows direct integration of RM information with system and project information for more efficient and effective utilization of resources and optimal overall risk management.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Analytical Calculation of the Critical Speed of a Driveshaft

2005-05-16
2005-01-2310
Determination of the critical speed of a driveshaft is critical for development and validation of its design for use in a vehicle because of its destructive effects. Typical calculations to determine critical speed are either over simplistic and not very accurate or very complicated requiring CAE software and capabilities. An analytical five-section non-prismatic beam model was developed to fill in this gap. The model was developed to compute the critical speed in a worksheet and proven to be as or more accurate as utilizing FEA methods. The model worksheet calculates the critical speed for one-piece conventional driveshafts and adapted for Visteon's Slip-In-Tube (SIT) driveshafts.
Technical Paper

Analyzing Unassigned Interactions to Strengthen DOE Strategy

2004-03-08
2004-01-1746
Low resolution fractional factorial experimental designs, used in screening, are more popular than ever due to the ever increasing costs of materials and machine time. Experimenters have to be more precise in their analysis, making every degree of freedom count. Resolution III designs are becoming more commonplace for use in screening designs. When running unsaturated resolution III designs there are extra degrees of freedom stemming from unassigned interactions. It is common practice to utilize these extra degrees of freedom to approximate error. In many cases, this common practice can over state the error and lead to erroneous results regarding factor statistical significance. Utilizing saturated resolution III designs and statistically analyzing unassigned interactions while estimating the error with replication is a method for strengthening the DOE strategy and improving the results from screening designs.
Technical Paper

Application of DOE Methods to RPM-Domain Data for Hydraulic Steering Pump NVH Improvement

2003-05-05
2003-01-1431
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and optimization of a hydraulic steering pump for NVH performance. DOE methods were applied to RPM-domain data to examine the effect of several different factors, as well as the interactions between these factors, on pump NVH. Whereas most DOE analyses typically consider only a single response variable, the present work considered multiple response variables. Specifically, pump NVH performance curves for several pump rotational orders over a range of shaft speeds were analyzed. Thus, it was possible to determine the effect of the factors in question over the entire speed range of pump operation, rather than a single speed or setting. Statistical methods were applied to determine which factors and interactions had a significant effect on pump NVH. These factors were used to construct an empirical mathematical prediction model for NVH performance.
Technical Paper

Applying Lean Principles in a Test Laboratory Environment

2005-04-11
2005-01-1051
Much research exists on the application of lean concepts in a traditional manufacturing setting and new research is broadening the scope of lean to encompass the product development cycle, yet little is documented about how lean can apply in a product development test laboratory. Testing is a hybrid environment, facing challenges unique from the takt-time driven manufacturing environment and multi-value stream product development environment. This paper will address how lean is being adapted to a product development test laboratory, where the objective and method to create a competitive edge remains the same: to drive waste out of the system and reduce the lead-time to the customer.
Technical Paper

Automated Finite Element Analysis of Fuel Rail Assemblies with the use of Knowledge Based Engineering Tools

2002-01-04
2002-01-1244
Realizing the value of knowledge, corporations are turning to Knowledge Based Engineering (KBE) as a design process. A fuel rail KBE tool was created at Visteon with the purpose of increasing knowledge retention and delivering knowledge based designs to the customer much quicker than with conventional methods. Currently, both engineers and CAD designers are using the Fuel Rail KBE Modeler at Visteon. It has been used on many vehicle programs and has saved the company countless person-hours of development time. The Fuel Rail KBE Modeler is a powerful tool that saves resources through automation of both the design and analysis processes. This paper documents the incorporation of automated FEA capability into the KBE environment.
Technical Paper

Automotive Axle Simulation and Correlation

2006-04-03
2006-01-1255
Up to date, computer aided engineering (CAE) has been used in improvement of design quality and reduction of cost and delivery time. Although it has been widely accepted as a standard product development tool by the engineering community, CAE still faces many challenges in improving simulation process efficiency through process integration and automation, and simulation accuracy by analytical model/physical testing correlation. CAE engineers are constantly improving the accuracy of their analytical models through test correlation to deliver higher confidence for their analysis result. Although laboratory testing has provided an effective way to accelerate product development, analytical simulation of the lab test has been used frequently to further reduce the development cost and time throughout many industries. This paper presents a case study of CAE correlation of a finite element (FE) model of an automotive beam axle assembly in a laboratory test environment.
Technical Paper

Broadband Noise Source Models as Aeroacoustic Tools in Designing Low NVH HVAC Ducts

2006-04-03
2006-01-1192
Computational Fluid Dynamics (CFD) is an integral part of product development at Visteon Climate Systems with a validated set of CFD tools for airflow and thermal management processes. As we increasingly build CAE capabilities to design not only thermal comfort, but quiet systems, developing noise prediction capabilities becomes a high priority. Two Broadband Noise Source (BNS) models will be presented, namely Proudman's model for quadrupole source and Curle's boundary layer model for dipole source. Both models are derived from Lighthill's acoustic analogy which is based on the Navier-Stokes equations. BNS models provide aeroacoustic tools that are effective in screening air handling systems with higher noise levels and identifying components or surfaces that generate most of the noise, hence providing opportunities for early design changes. In this paper, BNS models were used as aeroacoustic design tools to redesign an automotive HVAC center duct with high levels of NVH.
X