Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

Accident Analysis and Measures to Establish Compatibility

1999-03-01
1999-01-0065
The vehicle fleet differs in mass, geometry, stiffness and many other parameters. These differences are consequences of different design objectives for these vehicles and result from consumer demand, environmental and safety considerations etc. Accident research shows that the injury outcome differs in some cases, when two vehicles collide. Scientists often discuss a list of features that are assumed to be relevant for compatibility of vehicles. The relevance of these potentially important compatibility features and expected compatibility measures is examined from the perspective of accident analysis. An overview of this accident research is given and crash tests and measures are discussed that correspond with these findings.
Journal Article

Acoustic-Fluid-Structure Interaction (AFSI) in the Car Underbody

2022-06-15
2022-01-0938
The turbulent flow around vehicles causes high amplitude pressure fluctuations at the underbody, consisting of both hydromechanic and acoustic contributions. This induces vibrations in the underbody structures, which in turn may lead to sound transmission into the passenger compartment, especially at low frequencies. To study these phenomena we present a run time fully coupled acoustic-fluid-structure interaction framework expanding a validated hybrid CFD-CAA solver. The excited and vibrating underbody is resembled by an aluminium plate in the underbody of the SAE body which allows for sound transmission into the interior. Different excitation situations are generated by placing obstacles at the underbody upstream of the aluminium plate. For this setup we carry out a fully coupled simulation of flow, acoustics and vibration of the plate.
Technical Paper

Application of Detached-Eddy Simulation for Automotive Aerodynamics Development

2009-04-20
2009-01-0333
This paper presents a complete methodology for performing finite-volume-based detached-eddy simulation for the prediction of aerodynamic forces and detailed flow structures of passenger vehicles developed using the open-source CFD toolbox OpenFOAM®. The main components of the methodology consist of an automatic mesh generator, a setup and initialisation utility, a DES flow solver and analysis and post-processing routines. Validation of the predictions is done on the basis of detailed comparisons to experimental wind-tunnel data. Results for lift and drag are found to compare favourably to the experiments, with some moderate discrepancies in predicted rear lift. Point surface-pressure measurements, oil-streak images and maps of total pressure in the flow field demonstrate the approach's capabilities to predict the fine detail of complex flow regimes found in automotive aerodynamics.
Technical Paper

Architectural Leadership in the Automotive Industry

2000-11-01
2000-01-C067
In the new century the automotive industry is transforming itself from an entirely mechanical industry to an industry that is driven by electronics and services. The companies who will be most successful are those who are able to control, drive and renew the architectural concepts enabling the introduction of state-of-the-art information technology to the car and its supporting infrastructure. This paper will first define the term architecture and will elaborate about the increasing relevance of architectural thinking in the automotive domain. Architectural leadership will be defined to mean control (proprietary ownership of components and/or interfaces), creation of a de-facto or legal standard as well as renewal (creation of new products and markets utilizing new linkages of existing architectures). In the second part examples of successful and less successful approaches for establishing architectural leadership in the automotive industry are discussed.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development and Verification of In-Vehicle Networks in a Virtual Environment

2005-04-11
2005-01-1534
Due to the increase in demand for comfort and safety features in today's automobiles, the internal vehicle communication networks necessary to accommodate these features are very complex. These networks represent a heterogeneous architecture consisting of several ECUs exchanging information via bus systems such as CAN, LIN, MOST, or FlexRay buses. Development and verification of internal vehicle networks include multiple design layers. These layers are the logical layer represented by the software application, the associated data link layer, and the physical connection layer containing bus interfaces, wires, and termination. Verification of these systems in the early stages of the design process (before a physical network is available for testing) has become a critical need. As a result, the need to simulate these designs at all their levels of complexity has become critically important.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Development of a Rigid Passenger Safety Compartment Made of Composite Material-Application for Front Door Frames

1986-03-01
860278
Based an extensive preparatory work and analyses, suggestions have been drawn up with regard to solutions for front door frames in the following regions:- door hinge mountings, seat belt anchorage mountings of B pillars, cross sections for the top of A pillars. At the same time as the design work, FEM calculations should be carried out to ensure optimization of the concepts. Economy reasons and experiences in production runs point towards a very strong fibre glass-reinforced door frames manufacutred in the SMC procress. The complete door frame is examined in comparison with geometrically similar sheet metal parts on a test frame and in the vehicle.
Technical Paper

European Diesel Research IDEA-Experimental Results from DI Diesel Engine Investigations

1994-10-01
941954
Within the European research programme IDEA (Integrated Diesel European Action), detailed experimental and theoretical studies of the fundamental phenomena of the Diesel engine like flow, injection, mixture formation, auto-ignition, combustion and pollutant formation were carried out to improve knowledge and to set up models for a simulation code. Because this basic research of the Diesel combustion process is very complex and cost intensive, it was carried out jointly by the JRC (Joint Research Committee), an association of European car manufacturers (Fiat, Peugeot SA, Renault, Volvo and Volkswagen). The activities were also subsidized by the Commission of the European Communities and the Swedish National Board of Technical Development. The results of the research work will support the design of even more efficient engines and the further reduction of soot and NOx emissions and will also enable the companies to reduce time and cost in developing new engines.
Technical Paper

Evaluation of an UV-Analyzer for the Simultaneous NO and NO2 Vehicle Emission Measurement

2004-06-08
2004-01-1830
For the measurement of NO and NO2 the CLD-analyzer (chemiluminescense detector) has been used for more than twenty-five years. The disadvantage of the CLD is that NO can be measured only. To obtain total NOX (NO+NO2) the exhaust gas sample has to flow through a catalytic converter, which reduces NO2 to NO. The converter has a efficiency between 90 and 100%. For precise NO and NO2 values it is an advantage to analyze NO and NO2 directly. This paper describes a new UV NOX-analyzer for the simultaneous measurement of NO and NO2. Two different configurations, for high and low concentrations, eg. CVS-bag analysis are presented. The performance of the analyzers is documented in comparison to the UV-RAS analyzer with converter for NOX [1] and the conventional CLD-analyzer. The benefits of the new analyzer compared to analyzers equipped with a converter are given in detailed test results.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Feasible Steps towards Improved Crash Compatibility

2004-03-08
2004-01-1167
Compatibility has been a research issue for many years now. It has gained more importance recently due to significant improvements in primary and secondary safety. Using a rigorous approach, combining accident research and theoretical scientific considerations, measures to improve vehicle-vehicle compatibility, with an emphasis on feasibility, were discussed. German accident research statistics showed that frontal impacts are of higher statistical significance than side impacts. Based on this and the high potential for improvement due high available deformation energy, the frontal impact configuration was identified as the most appropriate collision mode for addressing the compatibility issue. In side impacts, accident avoidance was identified as the most feasible and sensible measure. For frontal vehicle-vehicle impacts, both trucks and passenger cars were identified as opponents of high statistical significance.
Technical Paper

Function-in-the-Loop Simulation of Electromechanical Steering Systems—Concept, Implementation, and Use Cases

2023-02-10
2023-01-5011
The accelerated processes in vehicle development require new technologies for function development and validation. With this motivation, Function-in-the-Loop (FiL) simulation was developed as a link between Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation. The combination of real Electronic Control Unit (ECU) hardware and software in conjunction with virtual components is very well suited for function development and testing. This approach opens up new possibilities for mechatronic systems that would otherwise require special test benches. For this reason, an Electric Power Steering (EPS) was transferred to a virtual environment using FiL simulation. This enables a wide range of applications, from EPS testing to the development of connected driving functions on an integrated platform. Right from the early development phases, the technology can be used purposefully with short integration cycles.
Book

Integrated Automotive Safety Handbook

2013-10-08
Even though a number of developed countries enjoy a high level of vehicle safety, more than 1.2 million fatalities still occur each year on roadways worldwide. There remains a need to continue improving vehicle and road safety. New technologies in sensors and electronic control units, and the growing knowledge of car-to-car and car-to-infrastructure technologies have led to a fusion of the previously separated areas of accident avoidance (popularly known as active safety) and mitigation of injuries (popularly known as passive safety) into the newer concept of integrated vehicle safety. This new approach represents a further step toward lowering accident rates. This book, written by two of the foremost automotive engineering safety experts, takes a unique and comprehensive approach to describing all areas of vehicle safety: accident avoidance, pre-crash, mitigation of injuries, and post-crash technologies, providing a solutions-based perspective of integrated vehicle safety.
Technical Paper

Investigation of Spray Formation of DI Gasoline Hollow-Cone Injectors Inside a Pressure Chamber and a Glass Ring Engine by Multiple Optical Techniques

1999-10-25
1999-01-3660
The paper describes detailed studies about the spray formation of a direct-injection high-pressure gasoline injector and the interaction of the droplets with the surrounding compressed air in pressure chamber experiments and inside an optically accessible research engine. Different optical techniques, like stroboscopic video technique, high-speed filming with flood-light illumination or with light-sheet illumination by a copper vapour laser, particle image velocimetry of the droplets, laser-induced fluorescence of the liquid phase, and spontaneous Raman spectroscopy for the measurement of the fuel/air ratio are used. From the recorded images spray characteristics such as spray penetration and spray cone angle are evaluated for different settings of the chamber pressure and temperature and for different rail pressures. The results show that all techniques are suitable to derive the quantities mentioned above.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

Numerical Investigations of the Dust Deposition Behavior at Light Commercial Vehicles

2023-04-24
2023-01-5022
Dry dust testing of vehicles on unpaved dust roads plays a crucial role in the development process of automotive manufacturers. One of the central aspects of the test procedure is ensuring the functionality of locking systems in the case of dust ingress and keeping the dust below a certain concentration level inside the vehicle. Another aspect is the customer comfort because of dust deposited on the surface of the car body. This also poses a safety risk to customers when the dust settles on safety-critical parts such as windshields and obstructs the driver’s view. Dust deposition on sensors is also safety critical and is becoming more important because of the increasing amount of sensors for autonomous driving. Nowadays, dust tests are conducted experimentally at dust proving grounds. To gain early insights and avoid costly physical testing, numerical simulations are considered a promising approach. Simulations of vehicle contamination by dry dust have been studied in the past.
X