Refine Your Search




Search Results

Technical Paper

3-D CFD Analysis of the Combustion Process in a DI Diesel Engine using a Flamelet Model

A 3-dimensional numerical study has been conducted investigating the combustion process in a VW 1.9l TDI Diesel engine. Simulations were performed modeling the spray injection of a 5-hole Diesel injector in a pressure chamber. A graphical methodology was utilized to match the spray resulting from the widely used Discrete Droplet Spray model to pressure chamber spray images. Satisfactory agreement has been obtained regarding the simulated and experimental spray penetration and cone angles. Thereafter, the combustion process in the engine was simulated. Using engine measurements to initialize the combustion chamber conditions, the compression stroke, the spray injection and the combustion simulation was performed. The novel RTZF two-zone flamelet combustion model was used for the combustion simulation and was tested for partial load operating conditions. An objective analysis of the model is presented including the results of a numerical parameter study.
Technical Paper

A New Generation of Diesel Oxidation Catalysts

An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Brake Judder - Analysis of the Excitation and Transmission Mechanism within the Coupled System Brake, Chassis and Steering System

The prevention of any brake noise or brake-induced body vibrations is a key development target firmly integrated in the car development process. Emphasis is placed here on disc brake judder that is attributable to thickness variations in the disc. These deviations from the ideal plane surface can be caused either by wear and corrosion or by thermal stresses (changes within the microstructure of the disc material). They are termed “cold judder” and “thermal judder” respectively. During braking, possible vibration excitation passes through a wide frequency band due to the coupling between the judder frequency and the wheel rotational speed, and thus, resonant frequencies of many vehicle components can be excited. This includes wheel suspension components and the steering column. In this paper, it is reported on extensive investigations into the topic of “cold judder”.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Code Coupling, a New Approach to Enhance CFD Analysis of Engines

A new method for the analysis of the gas flow in an internal combustion engine has been developed. It is based on the interactive coupling between commercially available three (STAR-CD) and one dimensional (PROMO) fluid dynamics codes. With this method the detailed transient flow distribution for any engine component of interest can be calculated taking into account the overall gas dynamic interaction with other engine components. The underlying physics and numerics are outlined. A description of the coupling procedure ensuring proper communication between the two computer codes is given. Also addressed is the averaging procedure adopted at the 3D boundaries, including the influence of the 1D/3D interface placement. A first application of this new method is presented, in which the gas flow in a turbo-charged DI-diesel-engine is simulated.
Technical Paper

Combustion in a Swirl Chamber Diesel Engine Simulation by Computation of Fluid Dynamics

The combustion and pollutant formation processes in a 1.9 I IDI Diesel engine are simulated with the SPEED computational fluid dynamics (CFD) code. A part and a full load simulation of the production engine and a full load simulation of a modified engine design are analyzed. The mixing and combustion process is visualized for all cases by means of the isosurfaces of stoichiometric mixture. The correlation of this surface with global quantities as heat release, mean pressure and temperature and swirl ratio is emphasized. The global properties are presented resolved for the swirl, main chamber and the swirl chamber throat separately. The formation of thermal NO and soot are simulated and analyzed.
Technical Paper

Comparison of Different EGR Solutions

This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Crank-Angle Resolved Temperature in SI Engines Measured by Emission-Absorption Spectroscopy

Crank-angle resolved, gas temperatures are determined in the combustion chamber of a Volkswagen (VW) standard-production, port-injected SI engine. During idle, two different methods are applied: (1) a direct spectroscopic emission-absorption technique at a resonance line of potassium, seeded to the air stream to generate sufficient spectral absorptance (‘colouring’ technique), and (2) a more standard, indirect method in which temperatures are derived from pressure recordings using a two-zone thermodynamic model. Combustion temperatures obtained during idle with both the spectroscopic (1) and ‘two-zone’ (2) methods are in good agreement. In addition, the spectroscopic technique is extended to transient operating conditions where the ‘two-zone’ method is not applicable. Combustion temperatures measured during cold-start and abrupt load alteration are in good agreement with former investigations.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Effect of HPDC Parameters on the Performance of Creep Resistant Alloys MRI153M and MRI230D

The growing demand for the use of magnesium alloys in the production of automotive powertrain components led to the development of creep resistant diecasting alloys MRI153M and MRI230D. The present paper addresses the main high-pressure die casting parameters, which significantly affect the performance of components, produced of these new alloys. A systematic study was carried out in order to correlate die-casting parameters to the performance of new alloys. The results obtained clearly indicated that optimization of molten metal and die temperatures, injection profile parameters and lubrication mixtures allowed to improve the die castability and service properties of the new alloys and produce high performance components with intricate geometry. This was manifested by production of several practical demonstrators such as gearboxes, oil pans, oil pumps and crankcases.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

European Diesel Research IDEA-Experimental Results from DI Diesel Engine Investigations

Within the European research programme IDEA (Integrated Diesel European Action), detailed experimental and theoretical studies of the fundamental phenomena of the Diesel engine like flow, injection, mixture formation, auto-ignition, combustion and pollutant formation were carried out to improve knowledge and to set up models for a simulation code. Because this basic research of the Diesel combustion process is very complex and cost intensive, it was carried out jointly by the JRC (Joint Research Committee), an association of European car manufacturers (Fiat, Peugeot SA, Renault, Volvo and Volkswagen). The activities were also subsidized by the Commission of the European Communities and the Swedish National Board of Technical Development. The results of the research work will support the design of even more efficient engines and the further reduction of soot and NOx emissions and will also enable the companies to reduce time and cost in developing new engines.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.