Refine Your Search



Search Results

Technical Paper

A New Generation of Diesel Oxidation Catalysts

An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Advanced Catalyst Studies of Diesel NOx Reduction for On-Highway Trucks

To date, several non-SCR catalysts and catalytic systems have been suggested for NOX reduction under oxygen rich (lean) conditions, such as those which exist in diesel engine exhaust gas. However, the performance of such catalysts and catalyst systems is not clear when used on actual diesel engines. This paper reports on experimental results obtained when lean NOx catalysts are applied to diesel engine exhaust. Particularly, the catalysts' NOx performance is examined when secondary hydrocarbons are added as reducing agents directly in the exhaust gas stream. In addition, the effect of different catalyst formulations and secondary hydrocarbon addition on particulate emissions is monitored. Finally, partial system optimization is performed and the applicability of such catalysts and systems to engines operating under the US Heavy Duty Transient Cycle is examined.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Catalytic NOx Reduction on a Passenger Car Diesel Common Rail Engine

The awareness concerning environmental issues and the economical need for fuel savings leads to the introduction of new, highly efficient Diesel engines for passenger cars. An engine with common rail injection system could meet this target and, with the help of an advanced diesel exhaust aftertreatment system also fulfilled the new legislative emission regulations. Besides the efficient oxidation of carbon monoxide (CO), hydrocarbons (HC) and diesel particulates, such a system also requires a moderate reduction efficiency for nitrogen oxides (NOx) under excess oxygen conditions. The present paper illustrates the further progress in catalytic NOx-reduction under excess of oxygen by hydrocarbon enrichment using the common rail injection system.
Technical Paper

Catalytic Reduction of Nox with Hydrocarbons Under Lean Diesel Exhaust Gas Conditions

This paper reports first results of research and development work to achieve Nox reduction under lean diesel exhaust gas conditions by using a special coated, zeolite based monolith catalyst. Much attention is paid to the optimization of the activated zeolite system and the influence of group Ib and VIII elements of the periodic system. A major part of the paper deals with the influence of hydrocarbons, carbon monoxide, sulfur dioxide and water on the activity of the catalyst. Another aspect discussed is the influence of the residence time of the exhaust gas components. The thermal stability and the influence of poisoning elements on the catalyst performance is demonstrated by model gas reactor tests on oven and engine aged samples. Finally, first results on the performance of the catalyst system in a vehicle dynometer test are given.
Technical Paper

Code Coupling, a New Approach to Enhance CFD Analysis of Engines

A new method for the analysis of the gas flow in an internal combustion engine has been developed. It is based on the interactive coupling between commercially available three (STAR-CD) and one dimensional (PROMO) fluid dynamics codes. With this method the detailed transient flow distribution for any engine component of interest can be calculated taking into account the overall gas dynamic interaction with other engine components. The underlying physics and numerics are outlined. A description of the coupling procedure ensuring proper communication between the two computer codes is given. Also addressed is the averaging procedure adopted at the 3D boundaries, including the influence of the 1D/3D interface placement. A first application of this new method is presented, in which the gas flow in a turbo-charged DI-diesel-engine is simulated.
Technical Paper

Comparison of Different EGR Solutions

This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Development and Application of a Computer Aided Engineering Tool for Hydrocarbon Adsorber Catalysts

To support the application and design of exhaust gas aftertreatment systems for gasoline fueled passenger cars based on hydrocarbon adsorber catalysts, a computer model was developed. This model is based on simplified, lumped kinetics for the adsorption and desorption of hydrocarbons and for the oxidation of CO and hydrocarbons. Also included in the model are convective transport of heat and mass in the gas phase, mass and heat transfer to the washcoat layer, and diffusion with reaction in the washcoat layer. The continuity equations for this model with the appropriate boundary conditions were solved for a single channel assuming adiabatic behavior. After validation of the prediction on experimental results, this model was used to perform a simple parametric study on the influence of inlet temperature,CO concentration, washcoat loading, adsorber content, and cell density on the HC emission.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development of Close-Coupled Catalyst Systems for European Driving Conditions

The present paper describes the results of a joint development program focussing on a system approach to meet the proposed EURO III and IV emission standards for a passenger car equipped with a 3.2 liter, 18 valve gasoline engine. Starting with the in-production configuration of a EURO II certified vehicle (model year 1997) the following improvement points were investigated in detail. By the introduction of a close-coupled catalyst in combination with engine measures to improve the catalyst light-off the proposed EURO III limits were met. The proposed EURO IV hurdle could be overcome by further using secondary air injection during cold-start in combination with an increased precious metal loading for the close-coupled catalyst.
Technical Paper

Development of Oxidation and de-NOx Catalyst for High Temperature Exhaust Diesel Trucks

SOF and de-NOx catalysts are applied to heavy-duty diesel trucks which are regulated by European 13 mode or Japanese 13 mode cycles. Precious metal free catalysts can reduce SOF at low temperatures without increasing sulfates up to 670C. This catalyst shows little deterioration after 400 hours of high temperature engine aging. 32% PM and 47% SOF reduction is observed under 13 mode tests when the exhaust gas temperature exceeds 700C (ECE-13 mode). This precious metal free catalyst is suitable for diesel trucks, especially trucks with natural aspirating engine whose exhaust gas temperature is very high. De-NOx catalysts with a 300-500C NOx reduction temperature window are applied to the Japanese heavy-duty test cycle (Japan 13 mode). When secondary diesel fuel is added under modes 8 to 12, (secondary fuel addition only when catalyst inlet temperature is more than 300C), 19-25% NOx can be reduced with 2-4% fuel penalty.
Technical Paper

Development of Scavenger-Free Three-Way Automotive Emission Control Catalysts with Reduced Hydrogen Sulfide Formation

Fundamental research work was undertaken to elucidate the mechanism of hydrogen sulfide formation on three-way automotive exhaust catalysts during the lean to rich engine operation sequence and to identify the role of the different catalyst components in this phenomenon. Based upon this knowledge, new catalysts were developed with reduced ability to form hydrogen sulfide by minimizing the storage of sulfur oxides. Engine dynamometer tests confirmed that the suppression of the hydrogen sulfide formation was obtained without loss of catalyst activity or aging stability. The role of the catalyst's age in the hydrogen sulfide formation is discussed. The development presented shows that it is possible to avoid “scavengers” to minimize the emission of hydrogen sulfide from three-way emission control catalysts.
Technical Paper

Diesel Particulate Emissions of Passenger Cars - New Insights into Structural Changes During the Process of Exhaust Aftertreatment Using Diesel Oxidation Catalysts

Diesel particulate mass emissions and their corresponding size distributions have been investigated on a diesel passenger car at steady state conditions using standard filters and a cascade impactor. These tests have been carried out at two different engine operating conditions (2100 rpm, 2.7 and 13.3 kW, respectively) corresponding to low and high exhaust gas temperatures. Two diesel fuels differing in their sulfur content (150 ppm and 2500 ppm S) have been used for these investigations. The particulate size distribution after diesel oxidation catalyst was found to be affected by the sulfur content of the diesel fuel and by the exhaust gas temperature. Interpretations of these results on a mechanistic basis are given. The diesel particulate emission studies have been extended to dynamic vehicle tests.
Technical Paper

Durability Aspects of NOx Storage Catalysts for Direct Injection Gasoline Vehicles

The introduction of gasoline direct injection technology into the European market will depend mainly on the availability of an effective and durable aftertreatment system, in order to reach future stringent European emission standards. NOx storage technology provides a reasonable chance of fulfilling future emission goals, but durability problems such as thermal degradation and sulfur poisoning have yet to be overcome. The present paper is dedicated to these problems, and demonstrates the progress achieved so far. The influence of different aging modes and aging severity on the NOx conversion efficiency of an advanced generation of NOx storage catalysts, is described in detail. It was found that the severity of aging at comparable catalyst bed temperatures, increases in the following order: hydrothermal aging in N2/H2O < engine aging w/o fuel cut at λ-1 < furnace aging in air < engine aging with fuel cut at λ-1.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Emission Control Systems for Two Stroke Engines - A Challenge for Catalysis=

The exhaust emissions of two stroke vehicles like motorbikes and scooters contribute to the pollution in urban areas of developing countries in South East Asia and India to a major extent. But also in Japan and selected European countries exhaust gas limitations become effective from 10/1998 and 06/1999 for these vehicles. To control this emissions catalytic aftertreatment by Hot Tubes® and/or monolith type catalysts are applied. Due to the constant rich operation of the two-stroke engines, common design criteria for three-way catalysts fail. Extremely high exhaust gas hydrocarbon concentrations lead to high exotherms during oxidation which increases the exhaust gas temperature to a range between 800 and 900 °C. Furthermore the lack of oxygen limits the CO and HC oxidation under certain engine operation conditions. Therefore, water-gas shift and steam reforming reactions play an important part in catalytic aftertreatment of two-stroke exhausts.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Evaluation of NOx Storage Catalysts for Lean Burn Gasoline Fueled Passenger Cars

Engine and laboratory tests were carried out to examine the performance of NOx adsorption catalysts for gasoline lean burn engines in fresh and aged condition. The results show that fresh NOx adsorption catalysts have the potential to meet EURO III emission standards. However, to accomplish these the fuel must contain a low sulfur concentration and the engine must be tuned to optimize the efficiency of the catalyst. After engine or furnace aging upto 750°C the catalyst shows some loss of NOx adsorption efficiency. This deterioration can be offset somewhat by increasing the frequency of lean/rich switching of the engine. Temperatures higher than 750°C may cause an irreversible destruction of the NOx, storage features while the three-way activity of the catalyst remains intact or even may improve. With reference to several physicochemical investigations it is believed that the detrimental effect of catalyst aging is attributed to two different deactivation modes.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.