Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Post-Injections Strategies on UHC and CO at Gasoline PPC Conditions in a Heavy-Duty Optical Engine

2017-03-28
2017-01-0753
Gasoline partially premixed combustion (PPC) has shown potential in terms of high efficiency with low emissions of oxides of nitrogen (NOx) and soot. Despite these benefits, emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO) are the main shortcomings of the concept. These are caused, among other things, by overlean zones near the injector tip and injector dribble. Previous diesel low temperature combustion (LTC) research has demonstrated post injections to be an effective strategy to mitigate these emissions. The main objective of this work is to investigate the impact of post injections on CO and UHC emissions in a quiescent (non-swirling) combustion system. A blend of primary reference fuels, PRF87, having properties similar to US pump gasoline was used at PPC conditions in a heavy duty optical engine. The start of the main injection was maintained constant. Dwell and mass repartition between the main and post injections were varied to evaluate their effect.
Technical Paper

Optical study on combustion transition from HCCI to PPC with gasoline compression ignition in a HD engine

2016-04-05
2016-01-0768
The partially premixed combustion (PPC) concept has shown high efficiency with low soot emissions. However, the in-cylinder phenomena are still to be explained and evaluated for further progress in the research. This work studies the start of combustion process during a transition from homogenous charge compression ignition (HCCI) to PPC. The process is visualized using a heavy-duty, non-swirling engine modified for optical access. High speed video was used to capture the natural luminosity of the combustion. The fuel used was PRF87. Single and double injection strategies were used at a load kept to the moderate level of 7.5 bar IMEPg. Single injections were swept from early HCCI to retarded PPC conditions whilst running a cycle to cycle temperature sweep, to capture the effect of injection timing and temperature differences simultaneously. Results show that retarded injections show less cycle-to-cycle variation due to temperature variations.
X