Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Numerical Flow Simulations of a Detailed Car Underbody

2001-03-05
2001-01-0703
The airflow around a detailed car underbody has been simulated using a commercial CFD software. Moving ground and rotating-wheel boundary conditions were applied in order to allow comparisons of Cd and dCd values with experimental data from a wind tunnel fitted with moving ground facilities. The calculated Cd and dCd figures compared very well with the available experimental results. Four configurations were tested and the maximum difference between experimental and numerical Cd values was 0.009. The individual contribution of different parts of the vehicle to the total drag was calculated and is discussed in this paper. This paper also describes in detail the numerical technique used to perform the computations.
X