Refine Your Search

Topic

Author

Search Results

Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Technical Paper

A High Resolution 3D Complete Engine Heat Balance Model

2015-09-06
2015-24-2533
The focus on engine thermal management is rapidly increasing due to the significant effect of heat losses on fuel consumption, engine performance and emissions. This work presents a time resolved, high resolution 3D engine heat balance model, including all relevant components. Notably, the model calculates the conjugated heat transfer between the solid engine components, the coolant and the oil. Both coolant and oil circuits are simultaneously resolved with a CFD solver in the same finite volume model as the entire engine solid parts. The model includes external convection and radiation. The necessary boundary conditions of the thermodynamic cycle (gas side) are mapped from a calibrated 1D gas exchange model of the same engine. The boundary conditions for the coolant and at the oil circuits are estimated with 1D models of the systems. The model is calibrated and verified with measurement data from the same engine as modeled.
Technical Paper

A Reference Architecture for Infotainment Systems

2006-10-16
2006-21-0013
Volvo Car Corporation has developed a Reference Architecture for PAG1 Infotainment Systems. A Reference Architecture is an architecture scoping over more than a single system, i.e. an architecture aimed for a family of systems. The Infotainment Reference Architecture has since 2001 been successfully applied for the PAG family which so far covers the infotainment systems of Volvo XC90, Volvo S40/V50, Jaguar XK, Aston Martin DB9 and the brand new Volvo S80. In 1999, the system design departments started up with the clear objective to develop a system solution aiming for the PAG infotainment system family. The work was carried out according to the established development process at Volvo Cars. A year later a discouraging design review was performed. The number of involved functions, the level of function interaction and the distribution of functionalities between ECUs resulted in a non-manageable system solution.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

A Study of Ground Simulation-Correlation between Wind-Tunnel and Water-Basin Tests of a Full-Scale Car

1989-02-01
890368
The aerodynamic properties of a full-scale car have been investigated in a wind-tunnel with upstream boundary layer suction, and in a water-basin where the car was rolling on the bottom. Measurements were carried out of the drag and lift forces, the static pressure distribution on the car body and the total head distribution between the car and the ground. By comparing data from the tunnel and the basin the ground simulation technique could be evaluated. The measured drag coefficients were found to be very similar in both facilities, while the absolute values of the lift coefficients were considerably higher in the tunnel. Lift differences due to configuration changes of the upperbody were essentially the same in the two facilities, while changes of the underbody caused smaller lift differences in the tunnel. In the project the water-basin technique was thoroughly investigated and proven.
Technical Paper

Accuracy and Speed for Scale-Resolving Simulations of the DrivAer Reference Model

2019-04-02
2019-01-0639
In aerodynamic development of ground vehicles, the use of Computational Fluid Dynamics (CFD) is crucial for improving the aerodynamic performance, stability and comfort of the vehicle. Simulation time and accuracy are two key factors of a well working CFD procedure. Using scale-resolving simulations, accurate predictions of the flow field and aerodynamic forces are possible, but often leads to long simulation time. For a given solver, one of the most significant aspects of the simulation time/cost is the temporal resolution. In this study, this aspect is investigated using the realistic vehicle model DrivAer with the notchback geometry as the test case. To ensure a direct and accurate comparison with wind tunnel measurements, performed at TU Berlin, a large section of the wind tunnel is included in the simulation domain. All simulations are performed at a Reynolds number of 3.12 million, based on the vehicle length.
Technical Paper

Accuracy in Flow Simulations of Climate Control - Part 2: The Passenger Compartment

1999-03-01
1999-01-1201
Computational fluid dynamics has been used to study the flow pattern in a Volvo S80 passenger compartment. The main purpose of this work is to secure a method for future use of CFD in developing climate control systems in cars. The effects of mesh resolution and mesh size were studied by varying the number of cells from 1 million to approximately 5 million. It was found that at least 2 million cells are needed to approach a mesh size independent solution. The other focus of this study was the outlet boundary conditions. Since a passenger compartment is not air tight, outlets were assumed to be around doors, through the floor, through the backseat, as well as the evacuation at the rear of the passenger compartment. It can be seen that the solution is only sensitive to drastic changes in the leakage.
Technical Paper

Accuracy in Flow Simulations of Climate Control-Part 1: The Air Distribution System

1999-03-01
1999-01-1200
Flow simulations of an air distribution system have been carried out using the CFD code FLUENT/UNS [1]. The purpose of this study is to validate this complex flow problem versus experimental data. Two modes of the climate system are investigated; the Ventilation mode and the Floor/Defroster mode. The complete geometrical model contains all ducts, central unit, heat exchangers, defroster and nozzles of the air distribution system. A high level of geometrical detailing in the mesh, consisting of 2.1 - 3.3 million cells, is used. The study shows that CFD has a potential to give reliable results, even for complex systems, like air distribution systems, if used in a controlled manner.
Technical Paper

Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code

2012-04-16
2012-01-0834
An acoustic one-dimensional compressor model has been developed. This model is based on compressor map information and it is able to predict how the pressure waves are transmitted and reflected by the compressor. This is later on necessary to predict radiated noise at the intake orifice. The fluid-dynamic behavior of the compressor has been reproduced by simplifying the real geometry in zero-dimensional and one-dimensional elements with acoustic purposes. These elements are responsible for attenuating or reflecting the pressure pulses generated by the engine. In order to compensate the effect of these elements in the mean flow variables, the model uses a corrected compressor map. Despite of the fact that the compressor model was developed originally as a part of the OpenWAM™ software, it can be exported to other commercial wave action models. An example is provided of exporting the described model to GT-Power™.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
Technical Paper

Body and Component Accuracy in Assembly Systems

1998-09-29
982269
To give the customer an immediate impression of quality several of criteria must be fulfilled such as styling, paint finish and fitting of outer panels/closures. Therefore, higher demands on geometrical quality e.g. stability for both exterior and interior are needed. The structural part of the car body is the key element for success. Beside the visual impression, lack of noise and vibrations during driving can convince a potential buyer to become an actual customer. To achieve this, car manufacturers have to draw up an overall strategy in combination with proper working methods to be able to guarantee a stable geometrical output throughout the entire development process and during series production over the lifetime of the vehicle. On a simultaneous engineering basis, the OEM, the system/component- and the process suppliers (for the industrial system from press shop to final assembly) have to adopt a common measurement strategy.
Technical Paper

Challenges and Opportunities for the Transition to Highly Energy-Efficient Passenger Cars

2011-06-09
2011-37-0013
Maintaining the current ratio between certified and the customer-observed fuel consumption even with future required levels poses a considerable challenge. Increasing the efficiency of the driveline enables certified fuel consumption down to a feasible level in the order of 80 g CO₂/km using fossil fuels. Mainly affecting off-cycle fuel consumption, energy amounts used to create good interior climate as well as energy-consuming options and features threaten to further increase. Progressing urbanization will lead to decreasing average vehicle speeds and driving distances. Highly efficient powertrains come with decreased amounts of waste energy traditionally used for interior climate conditioning, thus making necessary a change of auxiliary systems.
Technical Paper

Comparing Dynamic Programming Optimal Control Strategies for a Series Hybrid Drivetrain

2017-10-08
2017-01-2457
A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Technical Paper

Comparison Between CFD and PIV Measurements in a Passenger Compartment

2000-03-06
2000-01-0977
Numerical simulations of the flow inside a passenger compartment are compared with experimental data obtained from velocity field measurements using Particle Image Velocimetry (PIV). Comparisons are made in the front part of the passenger compartment with the air-distribution system operated in a ventilation mode. The sensitivty of the CFD-model to the boundary conditions was investigated and two different turbulence models were tested. Computations and experiments resulted in similar results for the overall flow field, however, rather large differences were found in the vertical spreading of the jet from the dashboard nozzle. The width of the jet was lower in the measurements than in the simulations. This difference is believed to be caused by the high diffusivity obtained when using a k-epsilon model in combination with an unstructured grid.
Technical Paper

Complete Engine Modeling Using CFD

2004-03-08
2004-01-0109
When developing gas exchange and combustion systems at Volvo Car Corporation, CFD (Computational Fluid Dynamics) is today a key tool. Three dimensional CFD is by tradition used to study one single component (e.g. manifolds and ports) at a time. Our experience is that this approach suffers from two main limitations; first that the boundary conditions (both upstream and downstream) are uncertain; and secondly that validation against experimental data is extremely difficult since any measured parameter will depend on the complete engine. Distribution of secondary gases and AFR (Air to Fuel ratio) are typical examples where traditional CFD methods fail. One proposed way to overcome these problems is to use 1D gas exchange models coupled with 3D CFD. The main problem with this approach is however the positioning and treatment of the boundaries between the models. Furthermore, the boundaries themselves will unconditionally cause disturbances in the pressure fields.
Technical Paper

Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars

2004-03-08
2004-01-0051
This paper describes the development of a robust and accurate method to model one-phase heat exchangers in complete vehicle air flow simulations along with a comprehensive comparison of EFD and CFD results. The comparison shows that the inlet radiator coolant temperatures obtained with CFD were within ±4°C of the experimental data with a trend in the differences being dependent on the car speed. The relative differences in cooling air mass flow rates increase with increasing car speed, with CFD values generally higher than EFD. From the investigation, the conclusion is that the methodology and modeling technique presented offer an accurate tool for concept and system solutions on the front end design, cooling package and fan. Care must be taken in order to provide the best possible boundary conditions paying particular attention to the heat losses in the engine, performance data for the radiator and fan characteristics.
Technical Paper

Development of Acoustic Models for High Frequency Resonators for Turbocharged IC-Engines

2012-06-13
2012-01-1559
Automotive turbo compressors generate high frequency noise in the air intake system. This sound generation is of importance for the perceived sound quality of luxury cars and may need to be controlled by the use of silencers. The silencers usually contain resonators with slits, perforates and cavities. The purpose of the present work is to develop acoustic models for these resonators where relevant effects such as the effect of a realistic mean flow on losses and 3D effects are considered. An experimental campaign has been performed where the two-port matrices and transmission loss of sample resonators have been measured without flow and for two different mean flow speeds. Models for two resonators have been developed using 1D linear acoustic theory and a FEM code (COMSOL Multi-physics). For some resonators a separate linear 1D Matlab code has also been developed.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Development of the Euro 5 Combustion System for Volvo Cars' 2.4.I Diesel Engine

2009-04-20
2009-01-1450
The development of a new combustion system for a light-duty diesel engine is presented. The soot-NOx trade-off is significantly improved with maintained or improved efficiency. This is accomplished only by altering the combustion chamber geometry, and thereby the in-cylinder flow. The bowl geometry is developed in CFD and validated in single cylinder tests. Tests and simulations align remarkably well. Under identical conditions in the engine the new combustion chamber decreases smoke by 11-27%, NOx by 2-11%, and maintains efficiency as compared to the baseline geometry. The injector nozzle is matched to the new bowl using design of experiments (DoE). By this method transfer functions are obtained that can be used to optimize the system using analytical tools. The emissions show a complex dependence on the nozzle geometry. The emission dependence on nozzle geometry varies greatly over the engine operating range.
X