Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Electric Power Assist Steering System Parameterization and Optimisation Employing Computer-Aided Engineering

2015-04-14
2015-01-1500
The automotive industry strives to develop high quality vehicles in a short period of time that satisfy the consumer needs and stand out in the competition. Full exploitation of simulation and Computer-Aided Engineering (CAE) tools can enable quick evaluation of different vehicle concepts and setups without the need of building physical prototypes. Addressing the aforementioned statements this paper presents a method for optimising the Electric Power-Assisted Steering (EPAS) ECU parameters employing solely CAE. The objective of the optimisation is to achieve a desired steering response. The developed process is tested on three specific steering metrics (friction feel, torque build-up and torque deadband) for two function parameters (basic steering torque and active return) of the EPAS. The optimisation method enabled all metrics to fall successfully within the target range.
Technical Paper

Reduction of Energy Used for Vehicle Interior Climate

2016-04-05
2016-01-0250
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Realistic combinations of energy saving measures were evaluated regarding the total energy use for vehicle interior climate using a one dimensional (1D) simulation model. The 1D simulation model included sub models of the passenger compartment, the air-handling unit, the Air Conditioning (AC) system, engine and engine cooling system. A test cycle representative for real-world conditions was developed. The test cycle included tests in cold, intermediate and warm conditions and the results were weighted with the estimated use in each condition.
Technical Paper

Strive for Zero Emissions Impact from Hybrids

2019-09-09
2019-24-0146
Since several decades, passenger cars and light duty vehicles (LDV) with spark-ignited engines reach full pollutant conversion during warm up conditions; the major challenge has been represented by the cold start and warming up strategies. The focus on technology developments of exhaust after treatment systems have been done in the thermal management in order to reach the warm up conditions as soon as possible. A new challenge is now represented by the Real Driving Emission (RDE) Regulation as this bring more various, and not any longer cycle defined, cold start conditions. On the other hand, once the full conversion has been reached, it would be beneficial for many Exhaust After Treatment System (EATS) components, e.g. for overall durability if the exhaust gas temperature could be lowered. To take significant further emission steps, approaching e.g. zero emission concepts, we investigate the use of Electrical Heating Catalyst (EHC) also including pre-heating.
X