Refine Your Search

Topic

Author

Search Results

Technical Paper

A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery

2019-09-09
2019-24-0194
While striving for more fuel-efficient vehicles, all possible measures are considered to increase the efficiency of the combustion engine powertrain. 48V mild hybrid technology is one such measure, SIDI (Spark Ignited Direct Injection) engines with Miller technology are another, while recovering energy from the engine’s waste heat (WHR) is yet another option. In this paper, results will be published from an advanced engineering project at Volvo Cars including all of these components. An ethanol based Organic Rankine Cycle (ORC) WHR-system was successfully built around a 4-cylinder, 2.0 litre SIDI-engine, including 48V mild hybrid technology, with vehicle packaging considered. A dedicated control system was also developed for the ORC system including communication between it and the engine. The ORC system uses the engine exhaust as the heat source, for which a purpose-built evaporator was designed and built to fit in the vehicle tunnel.
Technical Paper

A Reference Architecture for Infotainment Systems

2006-10-16
2006-21-0013
Volvo Car Corporation has developed a Reference Architecture for PAG1 Infotainment Systems. A Reference Architecture is an architecture scoping over more than a single system, i.e. an architecture aimed for a family of systems. The Infotainment Reference Architecture has since 2001 been successfully applied for the PAG family which so far covers the infotainment systems of Volvo XC90, Volvo S40/V50, Jaguar XK, Aston Martin DB9 and the brand new Volvo S80. In 1999, the system design departments started up with the clear objective to develop a system solution aiming for the PAG infotainment system family. The work was carried out according to the established development process at Volvo Cars. A year later a discouraging design review was performed. The number of involved functions, the level of function interaction and the distribution of functionalities between ECUs resulted in a non-manageable system solution.
Technical Paper

A Semiconductor Gas Sensor Array for the Detection of Gas Emissions from Interior Trim Materials in Automobiles

1998-02-23
980995
The principles of an electronic nose are described briefly. It is shown how a sensor array in combination with pattern recognition software can be used for quality control and classification of car interior trim materials. Anomalies such as bad smelling leather and carpet are shown as outliers. The results are consistent with GC-MS TVOC measurements as well as with data from a human sensory panel. More needs to be done, however, regarding the sensor stability in particular before the sensor array can be used for routine classification of the trim materials.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Technical Paper

A Structure and Calibration Method for Data-Driven Modeling of NOX and Soot Emissions from a Diesel Engine

2012-04-16
2012-01-0355
The development and implementation of a new structure for data-driven models for NOX and soot emissions is described. The model structure is a linear regression model, where physically relevant input signals are used as regressors, and all the regression parameters are defined as grid-maps in the engine speed/injected fuel domain. The method of using grid-maps in the engine speed/injected fuel domain for all the regression parameters enables the models to be valid for changes in physical parameters that affect the emissions, without having to include these parameters as input signals to the models. This is possible for parameters that are dependent only on the engine speed and the amount of injected fuel. This means that models can handle changes for different parameters in the complete working range of the engine, without having to include all signals that actually effect the emissions into the models.
Technical Paper

A Study of Ground Simulation-Correlation between Wind-Tunnel and Water-Basin Tests of a Full-Scale Car

1989-02-01
890368
The aerodynamic properties of a full-scale car have been investigated in a wind-tunnel with upstream boundary layer suction, and in a water-basin where the car was rolling on the bottom. Measurements were carried out of the drag and lift forces, the static pressure distribution on the car body and the total head distribution between the car and the ground. By comparing data from the tunnel and the basin the ground simulation technique could be evaluated. The measured drag coefficients were found to be very similar in both facilities, while the absolute values of the lift coefficients were considerably higher in the tunnel. Lift differences due to configuration changes of the upperbody were essentially the same in the two facilities, while changes of the underbody caused smaller lift differences in the tunnel. In the project the water-basin technique was thoroughly investigated and proven.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

Accuracy in Flow Simulations of Climate Control-Part 1: The Air Distribution System

1999-03-01
1999-01-1200
Flow simulations of an air distribution system have been carried out using the CFD code FLUENT/UNS [1]. The purpose of this study is to validate this complex flow problem versus experimental data. Two modes of the climate system are investigated; the Ventilation mode and the Floor/Defroster mode. The complete geometrical model contains all ducts, central unit, heat exchangers, defroster and nozzles of the air distribution system. A high level of geometrical detailing in the mesh, consisting of 2.1 - 3.3 million cells, is used. The study shows that CFD has a potential to give reliable results, even for complex systems, like air distribution systems, if used in a controlled manner.
Technical Paper

Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code

2012-04-16
2012-01-0834
An acoustic one-dimensional compressor model has been developed. This model is based on compressor map information and it is able to predict how the pressure waves are transmitted and reflected by the compressor. This is later on necessary to predict radiated noise at the intake orifice. The fluid-dynamic behavior of the compressor has been reproduced by simplifying the real geometry in zero-dimensional and one-dimensional elements with acoustic purposes. These elements are responsible for attenuating or reflecting the pressure pulses generated by the engine. In order to compensate the effect of these elements in the mean flow variables, the model uses a corrected compressor map. Despite of the fact that the compressor model was developed originally as a part of the OpenWAM™ software, it can be exported to other commercial wave action models. An example is provided of exporting the described model to GT-Power™.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Body and Component Accuracy in Assembly Systems

1998-09-29
982269
To give the customer an immediate impression of quality several of criteria must be fulfilled such as styling, paint finish and fitting of outer panels/closures. Therefore, higher demands on geometrical quality e.g. stability for both exterior and interior are needed. The structural part of the car body is the key element for success. Beside the visual impression, lack of noise and vibrations during driving can convince a potential buyer to become an actual customer. To achieve this, car manufacturers have to draw up an overall strategy in combination with proper working methods to be able to guarantee a stable geometrical output throughout the entire development process and during series production over the lifetime of the vehicle. On a simultaneous engineering basis, the OEM, the system/component- and the process suppliers (for the industrial system from press shop to final assembly) have to adopt a common measurement strategy.
Technical Paper

CAE Support to Vehicle Audio Installation Issues

2020-09-30
2020-01-1575
Audio CAE is an emerging area of interest for vehicle OEMs. Questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and tweeter speakers). In the case of the woofer, it is the interaction with the body vibration that is of interest.
Technical Paper

Challenges and Opportunities for the Transition to Highly Energy-Efficient Passenger Cars

2011-06-09
2011-37-0013
Maintaining the current ratio between certified and the customer-observed fuel consumption even with future required levels poses a considerable challenge. Increasing the efficiency of the driveline enables certified fuel consumption down to a feasible level in the order of 80 g CO₂/km using fossil fuels. Mainly affecting off-cycle fuel consumption, energy amounts used to create good interior climate as well as energy-consuming options and features threaten to further increase. Progressing urbanization will lead to decreasing average vehicle speeds and driving distances. Highly efficient powertrains come with decreased amounts of waste energy traditionally used for interior climate conditioning, thus making necessary a change of auxiliary systems.
Technical Paper

Comparison Between CFD and PIV Measurements in a Passenger Compartment

2000-03-06
2000-01-0977
Numerical simulations of the flow inside a passenger compartment are compared with experimental data obtained from velocity field measurements using Particle Image Velocimetry (PIV). Comparisons are made in the front part of the passenger compartment with the air-distribution system operated in a ventilation mode. The sensitivty of the CFD-model to the boundary conditions was investigated and two different turbulence models were tested. Computations and experiments resulted in similar results for the overall flow field, however, rather large differences were found in the vertical spreading of the jet from the dashboard nozzle. The width of the jet was lower in the measurements than in the simulations. This difference is believed to be caused by the high diffusivity obtained when using a k-epsilon model in combination with an unstructured grid.
Technical Paper

Complete Engine Modeling Using CFD

2004-03-08
2004-01-0109
When developing gas exchange and combustion systems at Volvo Car Corporation, CFD (Computational Fluid Dynamics) is today a key tool. Three dimensional CFD is by tradition used to study one single component (e.g. manifolds and ports) at a time. Our experience is that this approach suffers from two main limitations; first that the boundary conditions (both upstream and downstream) are uncertain; and secondly that validation against experimental data is extremely difficult since any measured parameter will depend on the complete engine. Distribution of secondary gases and AFR (Air to Fuel ratio) are typical examples where traditional CFD methods fail. One proposed way to overcome these problems is to use 1D gas exchange models coupled with 3D CFD. The main problem with this approach is however the positioning and treatment of the boundaries between the models. Furthermore, the boundaries themselves will unconditionally cause disturbances in the pressure fields.
Technical Paper

Conceptual Design of Distributed by-Wire Systems

2002-03-04
2002-01-0271
A design method for ultra-dependable control-by-wire systems is presented here. With a top-down approach, exploiting the system's intrinsic redundancy combined with a scalable software redundancy, it is possible to meet dependability requirements cost-effectively. The method starts with the system's functions, which are broken down to the basic elements; task, sensor or actuator. A task graph shows the basic elements interrelationships. Sensor and actuator nodes form a non-redundant hardware architecture. The functional task-graph gives input when allocating software on the node architecture. Tasks are allocated to achieve low inter-node communication and transient fault tolerance using scalable software redundancy. Hardware is added to meet the dependability requirements. Finally, the method describes fault handling and bus scheduling. The proposed method has been used in two cases; a fly-by-wire aircraft and a drive-by-wire car.
Journal Article

Coupling a Passive Sensor Manikin with a Human Thermal Comfort Model to Predict Human Perception in Transient and Asymmetric Environments

2017-03-28
2017-01-0178
Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature. For this reason, a thermo-physiological human model is required to accurately simulate the body’s dynamic response to a changing environment.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
X