Refine Your Search

Topic

Author

Search Results

Technical Paper

A Faster Algorithm for the Calculation of the IMEP

2000-10-16
2000-01-2916
The Indicated Mean Effective Pressure (IMEP) is a very important engine parameter, giving significant information about the quality of the cycle that transforms heat into mechanical work. For this reason, modern data acquisition systems display, on line, the cylinder pressure variation together with the corresponding IMEP. The paper presents a very simple algorithm for the calculation of IMEP, based on the correlation between IMEP and the gas pressure torque. It was found that that the IMEP may be calculated by a very simple formula involving only two harmonic components of the cylinder pressure variation. The computation of the two harmonic components is very easily performed because it does not involve the calculation of an average pressure and the cylinder volume variation. The method was experimentally validated showing differences less than 0.2% with respect to the IMEP calculated by the traditional method.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Technical Paper

A Novel Concept of Power Transmission Gear Design

1987-09-01
871646
Conventional gear designs are characterized by the meshing teeth which have to accommodate bending loads with a high dynamic load content, together with high contact stresses under a reciprocal sliding. Accordingly, special materials with sophisticated heat treatments, and high fabrication accuracy are required for heavy-duty gears, such as being used in off-road vehicle transmissions The paper describes a novel concept for designing power transmission gears, which eliminates physical sliding between meshing profiles and separates bending and contact loading of the teeth. Geometrical sliding is accommodated by internal shear deformation in specially designed rubber-metal laminates, thus allowing materials with high bulk strength but poor contact properties (aluminum, titanium, fiber-reinforced composites, etc.) to be used for heavy-duty gears.
Technical Paper

A Practical Time-Domain Approach to Controller Design and Calibration for Applications in Automotive Industry

2011-04-12
2011-01-0693
This paper summarizes a systematic approach to control of nonlinear automotive systems exposed to fast transients. This approach is based on a combined application of hardware characterization, which inverts nonlinearities, and conventional Proportional-plus-Integral-plus-Derivative (PID) control. The approach renders the closed-loop system dynamics more transparent and simplifies the controller design and calibration for applications in automotive industry. The authors have found this approach effective in presenting and teaching PID controller design and calibration guidelines to automotive engineering audience, who at times may not have formal training in controls but need to understand the development and calibration process of simple controllers.
Technical Paper

Active Control of Vibration and Noise in Automotive Timing Chain Drives

1997-02-24
970501
Vibration and noise are generally considered to be the major problems in power transmission chains. This paper presents an adaptive, active control strategy for the reduction of vibration in automotive timing chain drives and examines the effects of the active control on noise reduction. Experimental results show that the average vibration amplitude is diminished by as much as 90% under low to moderate tension conditions, and the chain noise is reduced by about 3 dB. The experimental apparatus has low cost and is readily applicable to an industrial environment.
Technical Paper

An Experimental Study of the Flow Structure Inside the Catalytic Converter of a Gasoline Engine

1995-02-01
950784
The flow structure inside the catalytic converter of gasoline engines is very important for consideration of the catalyst light-off condition, converter durability and conversion efficiency. However, the available experimental data under actual engine exhaust conditions are quite limited due to its complicated configuration, critical operating conditions and difficult optical access. Therefore, an experimental study was performed, using laser Doppler velocimetry technique, to measure the velocity distributions inside two production dual-monolith catalytic converters fitted on a firing gasoline engine over several engine operating conditions. This paper reports the normal velocity characteristics measured in a plane 1 mm away from the front surface of first monolith. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline for generating titanium dioxide seeding particles during the engine combustion.
Technical Paper

An Experimental and Analytical Investigation of the Spray Structure from Automotive Port Injectors

1994-10-01
941873
Port fuel injection system in gasoline engines is receiving an increasing attention for its potential advantages in meeting the constrains of simultaneous reduction in fuel consumption and exhaust emission, and maintaining a good engine performance. The structure of port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. In this paper, an experimental and analytical study is made to characterize the breakup mechanism and atomization process of the non-air-assisted port injector sprays in gasoline engines. The liquid sprays resulted from various types of current and development-type automotive fuel injectors were visualized using planar laser-induced fluorescence imaging technique. A comparison was made on the spray structure of the single hole and multi-hole injectors.
Technical Paper

Analysis and Reduction of Rattling in Power Transmission Systems

2000-03-06
2000-01-0032
Rattling in the inevitable clearances between engaging teeth of mechanical power transmission components, such as gears, gear couplings and clutches, etc., is becoming a more and more important issue, especially for automotive applications. An extensive research effort in this area is mostly dedicated to modeling of complex nonlinear processes that develop after the tooth separation occurs, or to experimental studies of these processes. The available abatement techniques for the rattling noise are expensive while not providing desirable noise reduction results. The paper presents a criterial condition for opening of clearances derived for a simplified model and clearly showing importance of various design parameters on possibility of commencement of the rattling process. Also, a novel rattling noise abatement technique is described, based on incorporating simple means for prolongation of the impact interactions between the co-impacting engaging teeth.
Book

Automotive Gasoline Direct-Injection Engines

2002-05-15
This book covers the latest global technical initiatives in the rapidly progressing area of gasoline direct injection (GDI), spark-ignited gasoline engines and examines the contribution of each process and sub-system to the efficiency of the overall system. Including discussions, data, and figures from many technical papers and proceedings that are not available in the English language, Automotive Gasoline Direct Injection Systems will prove to be an invaluable desk reference for any GDI subject or direct-injection subsystem that is being developed worldwide.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Technical Paper

Characterization of Multi-hole Spray and Mixing of Ethanol and Gasoline Fuels under DI Engine Conditions

2010-10-25
2010-01-2151
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Combustion Ionization for Resonance Detection and Mitigation Using Pilot Injection in a Diesel Engine

2014-04-01
2014-01-1360
Advanced injection systems play a major role in reducing engine out emission in modern diesel engines. One interesting technology is the common rail injection system which is becoming more vital in controlling emission due to its flexibility in injection pressure, timing and number of injection events. Many studies have showed the advantages of using such injection parameters to meet the strict emission and improve engine performance. A glow plug/ ion current sensor was used to measure ionization produced during the combustion process. The ion current signal contains many valuable information including combustion phasing, duration and combustion resonance. In prior publications, it was demonstrated the capability of the ion current to control the combustion phasing and the ability to detect combustion resonance. Therefore, the experimental testing was conducted under controlled combustion phasing using the feedback from the ion current sensor.
Technical Paper

Combustion and Emission Characteristics of a Small-Bore HSDI Diesel Engine in the Conventional and LTC Combustion Regimes

2005-09-11
2005-24-045
An experimental investigation was conducted on a small-bore, high-speed diesel engine to study the effect of different operating parameters on combustion and engine-out emissions in the conventional and low temperature regimes. For the conventional diesel combustion, the spray behavior is analyzed and a differentiation is made between the conditions in the small-bore and the larger bore quiescent chamber engines. The effects of the injection pressure, exhaust gas recirculation (EGR), injection timing and swirl ratio (SR) on combustion and engine-out emission are investigated. The trade-off between NOx and smoke, measured in Bosch smoke unit, (BSU), is investigated with a special attention to the low temperature combustion regime, (LTC). The results showed that the LTC regime could be reached at fairly high EGR rates under all the injection pressures investigated in this work. The margin for the variation in EGR was limited just before the misfiring EGR.
Technical Paper

Comparison between Combustion, Performance and Emission Characteristics of JP-8 and Ultra Low Sulfur Diesel Fuel in a Single Cylinder Diesel Engine

2010-04-12
2010-01-1123
JP-8 is an aviation turbine engine fuel recently introduced for use in military ground vehicle applications and generators which are mostly powered by diesel engines. Many of these engines are designed and developed for commercial use and need to be adapted for military applications. This requires more understanding of the auto- ignition and combustion characteristics of JP-8 under different engine operating conditions. This paper presents the results of a comparative analysis of an engine operation using JP-8 and ultra low sulfur diesel fuel (ULSD). Experiments were conducted on 0.42 liter single cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The results indicate that the distillation properties of fuel have an effect on its vaporization rate. JP-8 evaporated faster and had shorter ignition delay as compared to ULSD. The fuel economy with JP-8 was better than ULSD.
Technical Paper

Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines

1995-10-01
952402
A cycle-by-cycle analysis of HC emissions from each cylinder of a four-stroke V-6, 3.3 L production engine was made during cold start. The HC emissions were measured in the exhaust port using a high frequency flame ionization detector (FID). The effect of the initial startup position of the piston and valves in the cycle on combustion and HC emissions from each cylinder was examined. The mass of fuel injected, burned and emitted was calculated for each cycle. The equivalence ratio of the charge in the firing cycles was determined. The analysis covered the first 120 cycles and included the effect of engine transients on HC emissions.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
Technical Paper

Direct Visualization of High Pressure Diesel Spray and Engine Combustion

1999-10-25
1999-01-3496
An experimental study was carried out to visualize the spray and combustion inside an AVL single-cylinder research diesel engine converted for optical access. The injection system was a hydraulically-amplified electronically-controlled unit injector capable of high injection pressure up to 180 MPa and injection rate shaping. The injection characteristics were carefully characterized with injection rate meter and with spray visualization in high-pressure chamber. The intake air was supplied by a compressor and heated with a 40kW electrical heater to simulate turbocharged intake condition. In addition to injection and cylinder pressure measurements, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process. The results showed that optically accessible engines provide very useful information for studying the diesel combustion conditions, which also provided a very critical test for diesel combustion models.
Technical Paper

Displacement Responses of the Shoulder and Thorax in Lateral Sled Impacts

1993-11-01
933124
Three-dimensional film analysis was used to study the response of the shoulder and thoracic skeleton of cadavers to lateral sled tests conducted at Wayne State University. The response of the shoulder structure was of particular interest, although, it is perhaps the most difficult skeletal structure to track in a side impact. Results of the three-dimensional film analysis are given for rigid impacts at 6.7 and 9.1 meters per second, and for padded impacts averaging 9 meters per second. Results from a two-dimensional film analysis are included for the impacted clavicle which could not be tracked by the three-dimensional film analysis. Displacements at various locations on the shoulder and thoracic skeleton were normalized to estimate the response of a fiftieth percentile male.
X