Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Performance of JP-8 Unified Fuel in a Small Bore Indirect Injection Diesel Engine for APU Applications

2012-04-16
2012-01-1199
Recent legislation entitled “The Single Fuel Forward Policy” mandates that all vehicles deployed by the US military be operable with aviation fuel (JP-8). Therefore, the authors are conducting an investigation into the influence of JP-8 on a diesel engine's performance. The injection, combustion, and performance of JP-8, 20-50% by weight in ULSD (diesel no.2) mixtures (J20-J50) produced at room temperature, were investigated in a small indirect injection, high compression ratio (24.5), 77mm separate combustion chamber diesel engine. The effectiveness of JP8 for application in an auxiliary power unit (APU) at continuous operation (100% load) of 4.78bar bmep/2400rpm was investigated. The blends had an ignition delay of approximately 1.02ms that increased slightly in relation to the amount of JP-8 introduced. J50 and diesel no.2 exhibited similar characteristics of heat release, the premixed phase being combined with the diffusion combustion.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
X