Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Simple Linear Approach for Transient Fuel Control

2003-03-03
2003-01-0360
Significant A/F ratio excursion may occur during some engine transient operations, especially for transient periods of throttle tip in or tip out. A/F ratio excursion results in excessive emissions, extra fuel consumption, driveability deterioration and three-way-catalyst (TWC) efficiency drop. Simple two-parameter (X, τ) wall wetting models have traditionally been used to describe this transient A/F ratio excursion phenomenon. The transient fuel control techniques are utilized for this model to be applicable across vehicles, engines, fuel types and ambient conditions, so as to compensate for the A/F ratio excursion with the extra compensation fuel. More complicated model structures must be further expanded and model dependence on various environment conditions must be established to achieve a precise model. In this paper, a simple linear approach is proposed for transient fuel control, using least squares estimation.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model

2013-04-08
2013-01-1083
A state-of-the-art spray modeling methodology, recently applied to RANS simulations, is presented for LES calculations. Key features of the methodology, such as Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, are described. The ability of this approach to use cell sizes much smaller than the nozzle diameter is demonstrated. Grid convergence of key parameters is verified for non-evaporating and evaporating spray cases using cell sizes down to 1/32 mm. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable, however for local quantities the average of many simulated injections is necessary. Grid settings are recommended that optimize the accuracy/runtime tradeoff for LES-based spray simulations.
Technical Paper

An Overview of ARES Research

2011-01-19
2011-26-0085
With an intention to improve the performance of reciprocating engines used for distributed generation US-Dept. of Energy has launched ARES program. Under this program, the performance targets for these natural gas-fuelled stationary engines are ≻ 50% efficiency and NOx emissions ≺ 0.1 g/bhp-hr by 2013. This paper presents two technologies developed under this program. Lean-burn operation is very popular with engine manufacturers as it offers simultaneous low-NOx emissions and high engine efficiencies, while not requiring the use of any aftertreatment devices. Though engines operating on lean-burn operation are capable of better performance, they are currently limited by the inability to sustain reliable ignition under lean conditions. Addressing such an issue, research has evaluated the use of laser ignition as an alternative to the conventional Capacitance Discharge Ignition (CDI).
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Technical Paper

Application of CFD Modeling in Combustion Bowl Assessment of Diesel Engines Using DoE Methodology

2006-10-16
2006-01-3330
The current paper describes a methodology for combustion bowl assessment for diesel engines. The methodology is based on the application of Computational Fluid Dynamics (CFD) following a Design of Experiments (DoE) procedure. In this work the 3D CFD simulation was performed by the commercial CFD code AVL-FIRE for different combustion bowls from intake valve closing (IVC) to exhaust valve opening (EVO). The initial conditions (at IVC) and boundary conditions were obtained from 1D simulation. Since the work was concentrated on the spray injection, mixing, combustion as well as bowl aerodynamics only a sector mesh was employed for the calculations. A DoE procedure was also used for this simulation work in order to minimize the number of simulation runs and at the same time maintaining the accuracy required assessing the influences of different bowl geometry, spray and intake air motion parameters.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System?

2006-04-03
2006-01-0053
Emissions from CI engines fueled with dimethyl ether (DME) were discussed in this paper. Thanks to its high content of fuel oxygen, DME combustion is virtually soot free. This characteristic of DME combustion indicates that the particulate filter will not be needed in the aftertreatment system for engines fueled with DME. NOx emissions from a CI engine fueled with DME can meet the US 2007 regulation with a high EGR rate. Because 49% more fuel mass must be delivered in each DME injection than the corresponding diesel-fuel injection, and the DME injection pressure is lower than 500 bar under the current fuel-system technology, the DME injection duration is generally longer than that of diesel-fuel injection. This is unfavorable to further NOx reduction. A multiple-injection strategy with timing for the primary injection determined by the cylinder temperature was proposed.
Technical Paper

Challenges in Reforming Gasoline: All Components are Not Created Equal

2001-05-07
2001-01-1915
Gasoline is a complex fuel. Many of the constituents of gasoline that are beneficial for the internal combustion engine (ICE) are expected to be challenging for on-board reformers in fuel-cell vehicles. To address these issues, the autothermal reforming of gasoline and individual components of gasoline has been investigated. The results indicate that aromatic components require higher temperatures and longer contact times to reform than paraffinic components. Napthenic components require higher temperatures to reform, but can be reformed at higher space velocities than paraffinic components. The effects of sulfur are dependent on the catalyst. These results suggest that further evolution of gasoline could reduce the demands on the reformer and provide a better fuel for a fuel-cell vehicle.
Journal Article

Characterization of Diesel Common Rail Spray Behavior for Single- and Double-hole Nozzles

2008-10-06
2008-01-2424
Double-hole nozzle and multiple injections have the potential for better fuel atomization and mixing in DI engine. In order to evaluate the behavior of the spray for the double-hole nozzles against traditional single-hole ones, high-speed spray visualization was carried out using a streak film camera and a copper vapor laser, and in combination with a long-distance camera when taking microscopic movies. The spray penetration and the cone angle were measured based on the images and compared for variable injection pressures, and for single and split injections, under ambient and elevated chamber pressure conditions. The results showed that the spray of the double-hole nozzle has comparable penetration but smaller cone angle when viewed from the nozzle end, compared to the single-hole nozzle with the same total hole discharge cross-sectional area. For microscopic view, it was observed that the interaction between the dual sprays is very dynamic.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Characterizing Spray Behavior of Diesel Injection Systems Using X-Ray Radiography

2009-04-20
2009-01-0846
In Diesel engines, fuel injection plays a critical role in performance, efficiency, and emissions. Altering parameters such as injection quantity, duration, pressure, etc. influences the injector's performance. Changes in the injection system architecture can also affect the spray behavior. Understanding of the flow near the nozzle exit can lead to the establishment of correlation to spray characteristics further downstream, and eventually its combustion behavior in the engine. Because of its high density, the near-nozzle region of the spray is difficult to study using optical techniques. This near-nozzle region of spray from high pressure injectors was studied using the quantitative and time-resolved x-ray radiography technique. This method provides high spatial and temporal resolution without significant scattering effects.
Technical Paper

Combustion Behavior of Gasoline and Gasoline/Ethanol Blends in a Modern Direct-Injection 4-Cylinder Engine

2008-04-14
2008-01-0077
Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range. This paper summarizes combustion studies performed with gasoline as well as blends of gasoline and ethanol. These tests were performed on a modern, 4-cylinder spark ignition engine with direct fuel injection and exhaust gas recirculation. To evaluate the influence of blending on the combustion behavior the engine was operated on the base gasoline calibration. Cylinder pressure data taken during the testing allowed for detailed analysis of rates of heat release and combustion stability.
Technical Paper

Comparing Cavitation in Diesel Injectors Based on Different Modeling Approaches

2004-03-08
2004-01-0027
Results of Computational Fluid Dynamic (CFD) analyses of different diesel fuel injector nozzle configurations using a commercial CFD code are presented here. The emphasis of this study is on comparing cavitation models available in the commercial code with respect to their mathematical approach. One of the models is a simple single-phase model based on the Barotropic equation of state, while the other model is a two-phase model based on the bubble dynamic considerations. Results are compared for various 3-D diesel injector nozzles using the two cavitation-modeling approaches. Simulation results are observed to substantiate some of the experimentally established facts like; nozzle efficiency improvements by using techniques like rounded orifice inlets and conical orifices. Also, simulation results agree well with the experimental results. Spray characteristics are predicted based on a primary breakup model.
Technical Paper

Comparing the Performance of SunDiesel™ and Conventional Diesel in a Light-Duty Vehicle and Heavy-Duty Engine

2005-10-24
2005-01-3776
SunDiesel fuel is a biomass-to-liquid (BTL) fuel that may have certain attributes different from conventional diesel. In this investigation, 100% SunDiesel was tested both in a Mercedes A-Class (MY1999) diesel vehicle and a single-cylinder heavy-duty compression-ignition direct-injection engine. The SunDiesel's emissions and fuel consumption were significantly better than conventional diesel fuel, especially in nitrogen oxides (NOx) reduction. In the vehicle U.S. Environmental Protection Agency (EPA), Federal Test Procedure 75 (FTP-75), and New European Drive Cycle (NEDC) tests, the carbon dioxide emissions on a mile basis (g/mile) from SunDiesel fuel were almost 10% lower than the conventional diesel fuel. Similarly, in the single-cylinder engine steady-state tests, the reductions in brake specific NOx, carbon monoxide (CO), and particulate matter (PM) are equally significant. Combustion analysis, though not conclusive, indicates that there are differences deserving further research.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
X