Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessing Tank-to-Wheel Efficiencies of Advanced Technology Vehicles

2003-03-03
2003-01-0412
This paper analyzes four recent major studies carried out by MIT, a GM-led team, Directed Technologies, Inc., and A. D. Little, Inc. to assess advanced technology vehicles. These analyses appear to differ greatly concerning their perception of the energy benefits of advanced technology vehicles, leading to great uncertainties in estimating full-fuel-cycle (or “well-to-wheel”) greenhouse gas (GHG) emission reduction potentials and/or fuel feedstock requirements per mile of service. Advanced vehicles include, but are not limited to, advanced gasoline and diesel internal combustion engine (ICE) vehicles, hybrid electric vehicles (HEVs) with gasoline, diesel, and compressed natural gas (CNG) ICEs, and various kinds of fuel-cell based vehicles (FCVs), such as direct hydrogen FCVs and gasoline or methanol fuel-based FCVs.
Technical Paper

Total Fuel Cycle Impacts of Advanced Vehicles

1999-03-01
1999-01-0322
Recent advances in fuel-cell technology and low-emission, direct-injection spark-ignition and diesel engines for vehicles could significantly change the transportation vehicle power plant landscape in the next decade or so. This paper is a scoping study that compares total fuel cycle options for providing power to personal transport vehicles. The key question asked is, “How much of the energy from the fuel feedstock is available for motive power?” Emissions of selected criteria pollutants and greenhouse gases are qualitatively discussed. This analysis illustrates the differences among options; it is not intended to be exhaustive. Cases considered are hydrogen fuel from methane and from iso-octane in generic proton-exchange membrane (PEM) fuel-cell vehicles, methane and iso-octane in spark-ignition (SI) engine vehicles, and diesel fuel (from methane or petroleum) in direct-injection (DI) diesel engine vehicles.
X