Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

Analysis of Vehicle Performance at the FutureTruck 2002 Competition

2003-03-03
2003-01-1255
In June of 2002, 15 universities participated in the third year of FutureTruck, an advanced vehicle competition sponsored by the U.S. Department of Energy and Ford Motor Company. Using advanced technologies, teams strived to improve vehicle energy efficiency by at least 25%, reduce tailpipe emissions to ULEV levels, and lower greenhouse gas impact of a 2002 Ford Explorer. The competition vehicles were tested for dynamic performance and emissions and were judged in static events to evaluate the design and features of the vehicle. The dynamic events include braking, acceleration, handling, and fuel economy, while the dynamometer testing provided data for both the emissions event and the greenhouse gas event. The vehicles were scored for their performance in each event relative to each other; those scores were summed to determine the winner of the competition. The competition structure included different available fuels and encouraged the use of hybrid electric drivetrains.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Journal Article

Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars

2014-04-01
2014-01-1522
Similar to single-brick SCR architectures, the multi-brick SCR systems described in this paper require urea injection control software that meets the NOx conversion performance target while maintaining the tailpipe NH3 slip below a given threshold, under all driving conditions. The SCR architectures containing a close-coupled SCRoF and underfloor SCR are temperature-wise more favorable than the under-floor location and lead to significant improvement of the global NOx conversion, compared to a single-brick system. But in order to maximize the benefit of close-coupling, the urea injection control must maximize the NH3 stored in the SCRoF. The under-floor SCR catalyst can be used as an NH3 slip buffer, lowering the risk of NH3 slip at the tailpipe with some benefit on the global NOx conversion of the system. With this approach, the urea injection strategy has a limited control on the NH3 coverage of the under-floor SCR catalyst.
Technical Paper

Development of traction control system

2000-06-12
2000-05-0246
Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and get a simple structure, the brake controller is designed using Lyapunov redesign method and the throttle controller is designed using multiple sliding mode control. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve required acceleration performance. For the directional stability, a new method to measure the mixture of yaw rate and lateral acceleration with the speed difference of non-driven wheels is proposed. Using this measurement, the controller imposes individual pressure to the driven wheels and can maintain stability in the cornering or the lane change on the slippery road.
Technical Paper

Drive Cycle Fuel Consumption Variability of Plug-In Hybrid Electric Vehicles Due to Aggressive Driving

2009-04-20
2009-01-1335
Previous studies and on-road driving by consumers have shown that Hybrid Electric Vehicle fuel economy is very dependent on driver demand in both vehicle speed and vehicle acceleration [1]. The emerging technology of Plug-In Hybrid Vehicles (PHEV) may prove to also be more sensitivity to aggressive driver demand as compared to conventional internal combustion engine vehicles. This is due to the exceptional ability of the PHEV to minimize fuel consumption at mid to low power levels by the significant use of electric propulsion which enables engine downsizing. As vehicle speed and acceleration increase so does the power demand on the powertrain. The fuel consumption is directly affected by this increase in power demand level. To examine the fuel consumption impact of changing driver characteristics on PHEV’s, testing is conducted on two vehicles (parallel PHEV and power-split PHEV) on a four wheel chassis dynamometer at Argonne’s Advanced Powertrain Research Facility.
Technical Paper

Dynamic Ride Quality Investigation and DB of Ride Values for Passenger and RV Cars

2001-03-05
2001-01-0384
The ride values of seven cars(six passenger car and one RV car) are evaluated for 4 subjects based on the vibration of the bodies. And the seat qualities are investigated with the SEAT(seat effective amplitude transmissibility) value. The evaluated values are arranged as DB in html files. Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the acceleration responses of subjects are measured at 8 points on their bodies(3 Translational axes on the seat surface, 3 translational axes at the feet and 2 axes(x,z) at the backrest) when the subjects are excited by driving a vehicle on the road. The ride values such as the overall ride value, the component ride values and the seat effective amplitude transmissibility based on acceleration root mean square are evaluated for different seven vehicles using frequency weighting functions and axis multiplying factors.
Technical Paper

Dynamic Ride Quality Investigation for Passenger Car

1998-02-23
980660
The ride values of passenger cars are investigated for Korean subjects based on the vibration of the human bodies. When three subjects are excited by driving a vehicle on road, their responses of acceleration are measured at 12 points on their bodies according to Griffin's 12 axis system (3 translational axes on a seat surface, 3 rotational axes on a seat surface, 3 translational axes at the seat back and the 3 translational axes at the feet). Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the ride values, such as the seat effective amplitude transmissibility, the component ride value, and the overall ride value based on acceleration root mean square are evaluated for different four vehicles using frequency weighing functions and axis multiplying factors. The ride indices are also studied considering to the seat dynamic characteristics with subjects.
Technical Paper

Effect of Long-Duration Impact on Head

1972-02-01
720956
Impacts have been analyzed in terms of degree of injury, head injury criterion (HIC), and average acceleration as a function of time for frontal impacts against the following surfaces: 1. Rigid flat surface-fractured cadaver skull. 2. Astroturf-head drop of football-helmeted cadaver. 3. Windshield penetrating impact of a dummy. 4. Airbag-dynamic test by human volunteers. It is concluded that the linear acceleration/time concussion tolerance curve may not exist and that only impacts against relatively stiff surfaces producing impulses with short rise times can be critical. The authors hypothesize that if a head impact does not contain a critical HIC interval of less than 0.015 s, it should be considered safe as far as cerebral concussion is concerned.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Technical Paper

Equivalent Drive Cycle Analysis, Simulation, and Testing - Wayne State University's On-Road Route for EcoCAR2

2013-04-08
2013-01-0549
The Wayne State University (WSU) EcoCAR2 student team is participating in a design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. The team created a repeatable on-road test drive route using local public roads near the university that would be of similar velocity ranges contained in the EcoCAR2 4-Cycle Drive Schedule - a weighted combination of four different EPA-based drive cycles (US06 split into city and highway portions, all of the HWFET, first 505 seconds portion of UDDS). The primary purpose of the team's local on-road route was to be suitable for testing the team's added hybrid components and control strategy for minimizing petroleum consumption and tail pipe emissions. Comparison analysis of velocities was performed between seven local routes and the EcoCAR2 4-Cycle Drive Schedule. Three of the seven local routes had acceptable equivalence for velocity (R₂ ≻ 0.80) and the team selected one of them to be the on-road test drive route.
Technical Paper

Frequency Response and Coupling of Earpiece Accelerometers in the Human Head

2006-12-05
2006-01-3657
Currently, there is great interest in motorsports medicine in measuring driver head impact accelerations by adding small triaxial accelerometers to the communication earpieces worn by drivers. Various studies have attempted to validate the ability of the earpiece accelerometers to accurately measure head accelerations. Those experiments demonstrate success in being able to measure head accelerations on dummies and humans in low severity impacts and non-impact head motion. No study has been performed to ascertain the ability of the earpiece accelerometers to accurately measure rigid body head accelerations of the skull when they are mounted in a human ear canal and subjected to high severity head accelerations. This research was performed to evaluate the frequency response and coupling of the earpiece accelerometers to the human skull using post mortem human subject (PMHS) heads as the most realistic surrogate for the living human.
Technical Paper

Full-Scale Experimental Simulation of Pedestrian-Vehicle Impacts

1976-02-01
760813
A series of 10 full-scale experimental simulations of pedestrian-vehicle impact was carried out using cadavers and a 95th percentile anthropomorphic dummy. The test subjects were impacted laterally and frontally at 24, 32 and 40 km/h (15, 20 and 24 mph). Each subject was extensively instrumented with miniature accelerometers, up to a maximum of 53 transducers. The nine-accelerometer scheme was used to measure angular acceleration of body segments from which it was possible to compute the head injury criterion (HIC) for cadaver head impact. A full-size Chevrolet was used as the impacting vehicle. The impact event was three-dimensional in nature during which the body segments executed complex motions. Dummy impacts were more repeatable than cadaver impacts but the response of these test subjects were quite different. The HIC was higher for head-hood impact than for head-ground impact in two of the cases analyzed.
Journal Article

HIC(d) and Its Relation With Headform Rotational Acceleration in Vehicle Upper Interior Head Impact Safety Assessment

2008-04-14
2008-01-0186
Upper interior head impact safety is an important consideration in vehicle design and is covered under FMVSS 201. This standard generally requires that HIC(d) should not exceed 1000 when a legitimate target in the upper interior of a vehicle is impacted with a featureless Hybrid III headform at a velocity of 15 mph (6.7 m/s). As HIC and therefore HIC(d) is based on translational deceleration experienced at the CG of a test headform, its applicability is often doubted in protection against injury that can be caused due to rotational acceleration of head during impact. A study is carried out here using an improved lumped parameter model (LPM) representing headform impact for cases in which moderate to significant headform rotation may be present primarily due to the geometric configuration of targets.
Journal Article

How Stress Variance in the Automotive Environment will Affect a ‘True’ Value of the Reliability Demonstrated by Accelerated Testing

2014-04-01
2014-01-0722
This paper discusses the effect of the field stress variance on the value of demonstrated reliability in the automotive testing. In many cases the acceleration factor for a reliability demonstration test is calculated based on a high percentile automotive stress level, typically corresponding to severe user or environmental conditions. In those cases the actual field (‘true’) reliability for the population will be higher than that demonstrated by a validation test. This paper presents an analytical approach to estimating ‘true’ field reliability based on the acceleration model and stress variable distribution over the vehicle population. The method is illustrated by an example of automotive electronics reliability demonstration testing.
Technical Paper

Impact of Drive Cycle Aggressiveness and Speed on HEVs Fuel Consumption Sensitivity

2007-04-16
2007-01-0281
Hybrid Electric Vehicle (HEV) owners have reported significantly lower fuel economy than the published estimates. Under on-road driving conditions, vehicle acceleration, speed, and stop time differ from those on the normalized test procedures. To explain the sensitivity, several vehicles, both conventional and hybrid electric, were tested at Argonne National Laboratory. The tests demonstrated that the fuel economy of Prius MY04 was more sensitive to drive-cycle variations. However, because of the difficulty in instrumenting every component, an in-depth analysis and quantification of the reasons behind the higher sensitivity was not possible. In this paper, we will use validated models of the tested vehicles and reproduce the trends observed during testing. Using PSAT, the FreedomCAR vehicle simulation tool, we will quantify the impact of the main component parameters, including component efficiency and regenerative braking.
Technical Paper

Injury and Response of the Shoulder in Lateral Sled Tests

2001-11-01
2001-22-0005
The biomechanical response and injury tolerance of the shoulder in lateral impacts is not well understood. These data are needed to better understand human injury tolerance, validate finite element models and develop biofidelic shoulders in side impact dummies. Seventeen side impact sled tests were performed with unembalmed human cadavers. Data analyzed for this study include T1-Y acceleration, shoulder and thoracic load plate forces, upper sternum x and y accelerations, and struck side acromion x, y and z accelerations. One dimensional deflection at the shoulder level was determined from high-speed film by measuring the distance between a target on T1 and the impacted wall. Force-time response corridors were obtained for tests with 9 m/s pelvic offset, 10.5 m/s pelvic offset, 9 m/s unpadded flat wall, 6.7 m/s unpadded flat wall, 9 m/s soft padding and 9 m/s stiff padding. Maximum shoulder plate forces in unpadded 9 m/s tests (5.5 kN) were larger than in 6.7 m/s tests (3.3 kN).
Technical Paper

Investigation of the Kinematics and Kinetics of Whiplash

1967-02-01
670919
The kinematics of rear-end collisions based on published acceleration pulses of actual car-to-car collisions (10 and 23 mph) were reproduced on a crash simulator using anthropomorphic dummies, human cadavers, and a volunteer. Comparison of the responses of subjects without head support were based on the reactions developed at the base of the skull (occipital condyles). The cadavers gave responses which were representative of persons unaware of an impending collision. The responses of both dummies used were not comparable with those of the cadavers or volunteer, or to each other. An index based on voluntary human tolerance limits to statically applied head loads was developed and used to determine the severity of the simulations for the unsupported head cases. Results indicated that head torque rather than neck shear or axial forces is the major factor in producing neck injury.
X