Refine Your Search

Topic

Author

Search Results

Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
Technical Paper

A Parametric Simulation Model for Analyzing the Performance of a Steel-Tracked Feller Buncher

1999-09-13
1999-01-2785
A parametric simulation model of a steel-tracked feller buncher was developed1. This model can be used to predict the lift capacity, side tipping angles, grade-ability, and joint forces during a cutting cycle. The feller buncher is defined parametrically, allowing the user to quickly analyze different machine configurations simply by changing the value of a variable. Several simulations were performed to illustrate the application of the model.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

1999-04-20
1999-01-1586
This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Clean and Cost-effective Dry Boundary Lubricants for Aluminum Forming

1998-02-23
980453
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Technical Paper

Combined Binder Force and Temperature Adjustment for Weld Line Movement Control in Stamping with Tailor-Welded Blanks

2006-04-03
2006-01-0352
This paper introduces a new method to assist deep drawing of tailor-welded blanks with combined restraining force control and binder temperature control. The effect of variable flange temperature and blank holding force on the formability and weld-line displacement of aluminum tailor-welded blank was studied through Finite Element Analysis using LS-DYNA PC.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

Development in Lost Foam Casting of Magnesium

2003-03-03
2003-01-0821
Preliminary work was conducted in the casting of magnesium using the lost foam casting process. The lost foam or expendable pattern casting (EPC) process is capable of making extremely complicated part shapes at acceptable soundness levels and with low manufacturing costs. Standard test shapes were used to determine the ability of the magnesium to fill the mold and to assess the types of defects encountered. This paper will briefly explain how this project evolved including the developmental strategies formed, the products selected, the casting trials performed, and the casting results.
Journal Article

Efficient, Active Radiator-Cooling System

2013-05-15
2013-01-9017
A new concept for an efficient radiator-cooling system is presented for reducing the size or increasing the cooling capacity of vehicle coolant radiators. Under certain conditions, the system employs active evaporative cooling in addition to conventional finned air cooling. In this regard, it is a hybrid radiator-cooling system comprised of the combination of conventional air-side finned surface cooling and active evaporative water cooling. The air-side finned surface is sized to transfer required heat under all driving conditions except for the most severe. In the later case, evaporative cooling is used in addition to the conventional air-side finned surface cooling. Together the two systems transfer the required heat under all driving conditions. However, under most driving conditions, only the air-side finned surface cooling is required. Consequently, the finned surface may be smaller than in conventional radiators that utilize air-side finned surface cooling exclusively.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Journal Article

Fabrication and Characterization of Micro-Orifices for Diesel Fuel Injectors

2008-06-23
2008-01-1595
Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 μm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.
Technical Paper

Methodology for Metalcasting Process Selection

2003-03-03
2003-01-0431
Today, there are several hundreds of manufacturing processes available to the designer to choose from, and the number is constantly increasing. The ability to choose a manufacturing process for a particular user need set in the early stage of the design process is necessary. In metalcasting alone, there are over forty different processes with different capabilities. A designer can benefit from knowing the manufacturing process alternatives available to him. Inaccurate process selection can lead to financial losses and market share erosion. This paper discusses a methodology for selection of a metalcasting process based on a number of user specified attributes or requirements. A model of user requirements was developed and these requirements were matched with the capabilities of each metalcasting process. The metalcasting process which best meets these needs is suggested.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Modeling the Vibrations of and Energy Distributions in Car Body Structures

2011-05-17
2011-01-1573
A general numerical method, the so-called Fourier Spectral Element Method (FSEM), is described for the dynamic analysis of complex systems such as car body structures. In this method, a complex dynamic system is viewed as an assembly of a number of fundamental structural components such as beams, plates, and shells. Over each structural component, the basic solution variables (typically, the displacements) are sought as a continuous function in the form of an improved Fourier series expansion which is mathematically guaranteed to converge absolutely and uniformly over the solution domain of interest. Accordingly, the Fourier coefficients are considered as the generalized coordinates and determined using the powerful Rayleigh-Ritz method. Since this method does not involve any assumption or an introduction of any artificial model parameters, it is broadly applicable to the whole frequency range which is usually divided into low, mid, and high frequency regions.
Technical Paper

NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT) Education and Outreach Program

2005-07-11
2005-01-3107
The ALS/NSCORT Education and Outreach provides an avenue to engage and educate higher education students and K-12 educators/students in the center's investigations of the synergistic concepts and principles required for regenerative life-support in extended-duration space exploration. The following K-12 Education programs will be addressed: 1) Key Learning Community Project provides exposure, mentoring and research opportunities for 9-12th grade students at Key Learning Community This program was expanded in 2004 to include an “Explore Mars” 3-day camp experience for 150 Key students. The overall goal of the collaborative project is to motivate students to pursue careers in science, technology, and engineering; 2) Mission to Mars Program introduces 5th-8th grade students to the complex issues involved with living on Mars, stressing the interdisciplinary fundamentals of science, technology and engineering that underlie Advanced Life Support research.
X