Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Journal Article

Fuel Economy Benefits and Aftertreatment Requirements of a Naturally Aspirated HCCI-SI Engine System

2008-10-06
2008-01-2512
This vehicle simulation study estimates the fuel economy benefits of an HCCI engine system and assesses the NOx, HC and CO aftertreatment performance required for compliance with emissions regulations on U.S. and European regulatory driving cycles. The four driving cycles considered are the New European Driving Cycle, EPA City Driving Cycle, EPA Highway Driving Cycle, and US06 Driving Cycle. For each driving cycle, the following influences on vehicle fuel economy were examined: power-to-weight ratio, HCCI combustion mode operating range, driving cycle characteristics, requirements for transitions out of HCCI mode when engine speeds and loads are within the HCCI operating range, fuel consumption and emissions penalties for transitions into and out of HCCI mode, aftertreatment system performance and tailpipe emissions regulations.
Technical Paper

Overall Results: Phase I Ad Hoc Diesel Fuel Test Program

2001-03-05
2001-01-0151
The future of diesel-engine-powered passenger cars and light-duty vehicles in the United States depends on their ability to meet Federal Tier 2 and California LEV2 tailpipe emission standards. The experimental purpose of this work was to examine the potential role of fuels; specifically, to determine the sensitivity of engine-out NOx and particulate matter (PM) to gross changes in fuel formulation. The fuels studied were a market-average California baseline fuel and three advanced low sulfur fuels (<2 ppm). The advanced fuels were a low-sulfur-highly-hydrocracked diesel (LSHC), a neat (100%) Fischer-Tropsch (FT100) and 15% DMM (dimethoxy methane) blended into LSHC (DMM15). The fuels were tested on modern, turbocharged, common-rail, direct-injection diesel engines at DaimlerChrysler, Ford and General Motors. The engines were tested at five speed/load conditions with injection timing set to minimize fuel consumption.
X