Refine Your Search




Search Results

Journal Article

(R)evolution of E/E Architectures

This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Journal Article

360° Surround View System with Parking Guidance

In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Technical Paper

A 3D Simulation Methodology for Predicting the Effects of Blasts on a Vehicle Body

Triggered explosions are increasingly becoming common in the world today leading to the loss of precious lives under the most unexpected circumstances. In most scenarios, ordinary citizens are the targets of such attacks, making it essential to design countermeasures in open areas as well as in mobility systems to minimize the destructive effects of such explosive-induced blasts. It would be rather difficult and to an extent risky to carry out physical experiments mimicking blasts in real world scenarios. In terms of mechanics, the problem is essentially one of fluid-structure interaction in which pressure waves in the surrounding air are generated by detonating an explosive charge which then have the potential to cause severe damage to any obstacle on the path of these high-energy waves.
Technical Paper

A Backbone in Automotive Software Development Based on XML and ASAM/MSR

The development of future automotive electronic systems requires new concepts in the software architecture, development methodology and information exchange. At Bosch an XML and MSR based technology is applied to achieve a consistent information handling throughout the entire software development process. This approach enables the tool independent exchange of information and documentation between the involved development partners. This paper presents the software architecture, the specification of software components in XML, the process steps, an example and an exchange scenario with an external development partner.
Technical Paper

A Case Study in Applying a Product Line Approach for Car Periphery Supervision Systems

Car Periphery Supervision (CPS) systems comprise a family of automotive systems that are based on sensors installed around the vehicle to monitor its environment. The measurement and evaluation of sensor data enables the realization of several kinds of higher level applications such as parking assistance or blind spot detection. Although a lot of similarity can be identified among CPS applications, these systems are traditionally built separately. Usually, each single system is built with its own electronic control unit, and it is likely that the application software is bound to the controller's hardware. Current systems engineering therefore often leads to a large number of inflexible, dedicated systems in the automobile that together consume a large amount of power, weight, and installation space and produce high manufacturing and maintenance costs.
Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Data Reduction Algorithm for Automotive Multiplexing

Automotive multiplexing allows sharing information among various intelligent modules inside an automotive electronic system. In order to achieve an optimum functionality, the information should be exchanged among various electronic modules in real time. New features are introduced in automobiles such as Intelligent Vehicle Highway System (IVHS), intelligent transportation support system, engine immobilizers, night vision assistance system, and automated collision avoidance and notification system. The inclusion of such features increases the data traffic over the multiplexing bus. Also, these features require very high speed and expensive bus. Data reduction techniques are used to send the data over a transmission media at high speed. Using the data reduction techniques, we will be able to include new features in automobiles without the need of a high speed bus. Since the automotive environment is different, a special data reduction algorithm is mandated.
Technical Paper

A Design Methodology for Safety-Relevant Automotive Electronic Systems

For the development of future safety-relevant automotive electronic systems a thorough adaptation of the existing design process is necessary to consider safety and reliability in a more systematic way. In this paper an approach for a new design methodology is presented. It is based on the V-Model which is the established process model for the development of electronic and software systems in the automotive domain. For an advanced consideration of safety and reliability the existing process is extended by a second V (with process elements that have a special focus on safety and reliability) to a “Double V”. The new elements are interconnected with the existing ones at several points of time during the development process. By a defined information exchange between the two Vs continuity in the methodology is guaranteed. Basis for the extension are experiences of the aerospace domain that were adopted to automotive conditions.
Technical Paper

A Distributed Engineering Computer Aided Learning System

In this paper, we proposed a distributed Engineering Computer Aided Learning System. Instead of attending engineering teaching sessions, engineering students are able to interact with the software to gain the same amount of teaching materials. Besides, they will interact with other engineering students from other Engineering schools. The proposed software has the ability to examine the student step by step to reach certain goals. The training and the examination will be different based on the student level and his learning process. Using this system the role of excellent professor can be achieved. The software will have two sessions, i.e. test session and learning session. The software provides the capability of knowledge sharing between multi schools and different educational systems that can provide the students with a large set of training materials. The system was built using JAVA programming language.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Fuel Surrogate Validation Approach Using a JP-8 Fueled Optically Accessible Compression Ignition Engine

An experimental fuel surrogate validation approach is proposed for a compression ignition application, and applied to validate a Jet-A POSF 4658 fuel surrogate. The approach examines the agreement of both physical and chemical properties of surrogate and target fuels during validation within a real compression-ignition engine environment during four sequential but distinct combustion phases. In-cylinder Mie Scattering measurements are applied to evaporating sprays to compare the behavior of the surrogate, its target fuel, and for reference, n-heptane. Early mixture formation and low temperature reaction behavior were investigated using 2-D broadband chemiluminescence imaging, while high temperature ignition and combustion chemistry were studied using OH chemiluminescence imaging. The optical measurements were combined with cylinder pressure-based combustion analysis, including ignition delay and premixed burn duration, to validate the global behavior of the surrogate.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.