Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Technical Paper

A PEV Emulation Approach to Development and Validation of Grid Friendly Optimized Automated Load Control Vehicle Charging Systems

2018-04-03
2018-01-0409
There are many challenges in implementing grid aware plug-in electric vehicle (PEV) charging systems with local load control. New opportunities for innovative load control were created as a result of changes to the 2014 National Electric Code (NEC) about automatic load control definitions for EV charging infrastructure. Stakeholders in optimized dispatch of EV charging assets include the end users (EV drivers), site owner/operators, facility managers and utilities. NEC definition changes allow for ‘over subscription’ of more potential EV charging station load than can be continuously supported if the total load at any time is within the supply system safety limit. Local load control can be implemented via compact submeter(s) with locally hosted control algorithms using direct communication to the managed electric vehicle supply equipment (EVSE).
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

Challenges in Reforming Gasoline: All Components are Not Created Equal

2001-05-07
2001-01-1915
Gasoline is a complex fuel. Many of the constituents of gasoline that are beneficial for the internal combustion engine (ICE) are expected to be challenging for on-board reformers in fuel-cell vehicles. To address these issues, the autothermal reforming of gasoline and individual components of gasoline has been investigated. The results indicate that aromatic components require higher temperatures and longer contact times to reform than paraffinic components. Napthenic components require higher temperatures to reform, but can be reformed at higher space velocities than paraffinic components. The effects of sulfur are dependent on the catalyst. These results suggest that further evolution of gasoline could reduce the demands on the reformer and provide a better fuel for a fuel-cell vehicle.
Journal Article

Cognitive Distraction While Driving: A Critical Review of Definitions and Prevalence in Crashes

2012-04-16
2012-01-0967
There is little agreement in the field of driving safety as to how to define cognitive distraction, much less how to measure it. Without a definition and metric, it is impossible to make scientific and engineering progress on determining the extent to which cognitive distraction causes crashes, and ways to mitigate it if it does. We show here that different studies are inconsistent in their definitions of cognitive distraction. For example, some definitions do not include cellular conversation, while others do. Some definitions confound cognitive distraction with visual distraction, or cognitive distraction with cognitive workload. Other studies define cognitive distraction in terms of a state of the driver, and others in terms of tasks that may distract the driver. It is little wonder that some studies find that cognitive distraction is a negligible factor in causing crashes, while others assert that cognitive distraction causes more crashes than drunk driving.
Technical Paper

Comparison between Rule-Based and Instantaneous Optimization for a Single-Mode, Power-Split HEV

2011-04-12
2011-01-0873
Over the past couple of years, numerous Hybrid Electric Vehicle (HEV) powertrain configurations have been introduced into the marketplace. Currently, the dominant architecture is the power-split configuration, notably the input splits from Toyota Motor Sales and Ford Motor Company. This paper compares two vehicle-level control strategies that have been developed to minimize fuel consumption while maintaining acceptable performance and drive quality. The first control is rules based and was developed on the basis of test data from the Toyota Prius as provided by Argonne National Laboratory's (Argonne's) Advanced Powertrain Research Facility. The second control is based on an instantaneous optimization developed to minimize the system losses at every sample time. This paper describes the algorithms of each control and compares vehicle fuel economy (FE) on several drive cycles.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Determining Vibro-Acoustic Characteristics and Structural Damping of an Elastic Monolithic Panel

2019-06-05
2019-01-1538
Evaluations of the dynamic and acoustic responses of panels, partitions, and walls are of concern across many industries, from building home appliances, planning meeting rooms, to designing airplanes and passenger cars. Over the past few decades, search efforts for developing new methodologies and technologies to enable NVH engineers to acquire and correlate dynamically the relationship between input excitations and vibro-acoustic responses of arbitrary-shaped panels has grown exponentially. The application of a particular methodology or technology to the evaluation of a specific structure depends intimately on the goals and objectives of the NVH engineers and industries.
Technical Paper

Development of Fuel Consumption Standards for Chinese Light-Duty Vehicles

2005-04-11
2005-01-0534
To restrain the phenomenal increase in oil consumption in China, the Chinese government called for measures to reduce oil consumption of the road transportation sector through adopting vehicle fuel consumption standards. This paper describes the development of China's first set of fuel consumption standards for light-duty passenger vehicles. The adopted standards cover M1 class vehicles, which, according to European definition (and adopted by China), include passenger cars, minivans, and sports utility vehicles (SUVs). In particular, we present the goal, technical background, structure, and values of the adopted standards. We also present their potential effect on oil use reduction. The standards are set in liters of fuel consumption per 100 km for individual vehicle weight categories. The standards are maximum fuel consumption values for given vehicle weight categories.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading

1986-10-01
861925
A review of the literature dealing with the injury tolerance of the lower extremities in quantitative terms is provided. The data stem from sources ranging from Weber (1859) to as recent as Culver (1984) and in all cases involve tests of embalmed or unembalmed cadaveric specimens. The strength of the femur (thigh bone) and tibia (shin bone) have been depicted primarily in terms of the peak axial compressive force or bending moment associated with fracture-producing tests. Peak forces involved in fracturing the patella (knee cap) are reported for static and dynamic distributed loads involving both padded and rigid contact surfaces. One study is described where patella data are available for punch-through type fractures resulting from loading by small diameter impactors. Limited data are provided for hip joint dislocation and/or pelvic fracture as a result of loading through the femur. Finally, limited data are also included for injury at the knee and ankle joints.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Lattice Brake Disc Instability Analysis Using Transient Complex Eigenvalue Method in Terms of Excitation Applied to the Pad

2018-04-03
2018-01-0091
This paper describes an integrated approach to the analysis of brake squeal with newly lattice brake disc design. The procedure adopted to define the lattice properties by considering the periodicity cell of lattice plates, present equations of motion and modes response of a periodic lattice disc in principal coordinates on the rotating disc which excited by distributed axial load. The non-linear contact problem is carried out based on a typical passenger car brake for vanned and lattice brake disc types as it undergoes a partial simulation of the SAE J2521 drag braking noise test. The experimental modal analysis (EMA) with impact hammer test is used to obtain the brake rotor modal properties and validated finite element Free- Free State and stability analysis. The fugitive nature of brake squeal is analyzed through the complex eigenvalue extraction technique to define dynamic instability.
X