Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Method for Vehicle Occupant Height Estimation

2017-03-28
2017-01-1440
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Technical Paper

Cadaver Knee, Chest and Head Impact Loads

1967-02-01
670913
Human tolerance to knee, chest, and head impacts based upon skeletal fracture of cadavers is reported. The results are based upon unrestrained cadaver impacts in a normal seated position in simulated frontal force accidents at velocities between 10 and 20 mph and stopping distances of 6-8 in. The head target was covered with 15/16 in. of padding. No skull or facial fractures were observed at loads up to 2640 lb. Extensive facial fractures and a linear skull fracture occurred during the application of the maximum head force of 4350 lb. The chest target was 6 in. in diameter with 15/16 in.of padding. The padding was rolled over the edge of the target to minimize localized high force areas on the ribs. A 1/8 in. diameter rod was inserted through the chest and fastened through a ball joint and flange to the soft tissue at the sternum.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Dynamic Response of the Human Cadaver Head Compared to a Simple Mathematical Model

1968-02-01
680784
It is shown that the response of the occiput of a cadaver to sinusoidal vibration input to the frontal bone corresponds closely to that of a simple damped spring-mass system having a natural frequency equal to the first mode frequency of the skull, 0.17 damping factor. The first and third bending mode of the skull occurred near 300 and 900 Hz for both the cadaver preparation with silicon gel filled cranial cavity and the live human head. A second mode was found near 600 Hz in the live human. Head acceleration levels at which opposite pole pressure reached near —1 atm were 170 g and 500–600 g in the human cadaver and live monkey head, respectively, which values are roughly inversely proportional to major intracranial diameters. A method is derived for comparing the impact response of a simple system to a general shaped pulse to that of the cadaver head.
Technical Paper

Dynamic Response of the Spine During +Gx Acceleration

1975-02-01
751172
A review of the existing mathematical models of a car occupant in a rear-end crash reveals that existing models inadequately describe the kinematics of the occupant and cannot demonstrate the injury mechanisms involved. Most models concentrate on head and neck motion and have neglected to study the interaction of the occupant with the seat back, seat cushion, and restraint systems. Major deficiencies are the inability to simulate the torso sliding up the seat back and the absence of the thoracic and lumbar spine as deformable, load transmitting members. The paper shows the results of a 78 degree-of-freedom model of the spine, head, and pelvis which has already been validated in +Gz and -Gx acceleration directions. It considers automotive-type restraint systems, seat back, and seat cushions, and the torso is free to slide up the seat back.
Technical Paper

Effect of Long-Duration Impact on Head

1972-02-01
720956
Impacts have been analyzed in terms of degree of injury, head injury criterion (HIC), and average acceleration as a function of time for frontal impacts against the following surfaces: 1. Rigid flat surface-fractured cadaver skull. 2. Astroturf-head drop of football-helmeted cadaver. 3. Windshield penetrating impact of a dummy. 4. Airbag-dynamic test by human volunteers. It is concluded that the linear acceleration/time concussion tolerance curve may not exist and that only impacts against relatively stiff surfaces producing impulses with short rise times can be critical. The authors hypothesize that if a head impact does not contain a critical HIC interval of less than 0.015 s, it should be considered safe as far as cerebral concussion is concerned.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
Technical Paper

Fracture Behavior of the Skull Frontal Bone Against Cylindrical Surfaces

1970-02-01
700909
A test program has been conducted to determine the fracture behavior of the human frontal bone against two different rigid cylindrical surfaces; one surface was of 1 in. radius and one was of 5/16 in. radius; both were 6½ in. long. The purpose of this research program was to provide human tolerance data which would: 1. Assist in the design of structures likely to be impacted by the human head. 2. Extend the calibration range of frangible headforms. Twelve cadavers were tested in this program; seven against the 1 in. radius cylinder and five against the 5/16 in. radius cylinder. The test arrangement employed a guided drop of the test surface against a stationary head which was free to rebound. Drop heights were increased progressively until borderline fractures were obtained. The large radius shape consistently yielded linear fractures indicating that it is effectively a blunt surface. Fracture loads ranged 950-1650 lb.
Technical Paper

Frequency Response and Coupling of Earpiece Accelerometers in the Human Head

2006-12-05
2006-01-3657
Currently, there is great interest in motorsports medicine in measuring driver head impact accelerations by adding small triaxial accelerometers to the communication earpieces worn by drivers. Various studies have attempted to validate the ability of the earpiece accelerometers to accurately measure head accelerations. Those experiments demonstrate success in being able to measure head accelerations on dummies and humans in low severity impacts and non-impact head motion. No study has been performed to ascertain the ability of the earpiece accelerometers to accurately measure rigid body head accelerations of the skull when they are mounted in a human ear canal and subjected to high severity head accelerations. This research was performed to evaluate the frequency response and coupling of the earpiece accelerometers to the human skull using post mortem human subject (PMHS) heads as the most realistic surrogate for the living human.
Technical Paper

Head Model for Impact

1972-02-01
720969
A human head model has been developed primarily for use in evaluation of impact attenuation properties of football helmets, but is also applicable in automobile impact safety tests. Using firm silicon rubber molds made from impressions of cadaver bones, a skull and mandible were each cast in one piece using a self-skinning urethane foam that hardens into cross section geometry similar to the human bone. A rubber gel material is used to simulate the brain. The skull and attached mandible are overlayed with repairable silicon rubber skin having puncture and sliding-over-bone characteristics similar to human skin. At present, the model has a rudimentary solid silicon rubber neck, through the center of which runs a flexible steel cable attached at the foramen magnum. The cable is used to attach the head to a carriage or anthropometric dummy and can be adjusted in tension to give various degrees of flexibility.
Technical Paper

Investigation of the Kinematics and Kinetics of Whiplash

1967-02-01
670919
The kinematics of rear-end collisions based on published acceleration pulses of actual car-to-car collisions (10 and 23 mph) were reproduced on a crash simulator using anthropomorphic dummies, human cadavers, and a volunteer. Comparison of the responses of subjects without head support were based on the reactions developed at the base of the skull (occipital condyles). The cadavers gave responses which were representative of persons unaware of an impending collision. The responses of both dummies used were not comparable with those of the cadavers or volunteer, or to each other. An index based on voluntary human tolerance limits to statically applied head loads was developed and used to determine the severity of the simulations for the unsupported head cases. Results indicated that head torque rather than neck shear or axial forces is the major factor in producing neck injury.
Technical Paper

Living Human Dynamic Response to —Gx Impact Acceleration II—Accelerations Measured on the Head and Neck

1969-02-01
690817
A methodical investigation and measurement of human dynamic response to impact acceleration is being conducted as a Joint Army-Navy-Wayne State University investigation. Details of the experimental design were presented at the Twelfth Stapp Car Crash Conference in October 1968. Linear accelerations are being measured on the top of the head, at the mouth, and at the base of the neck. Angular velocity is also being measured at the base of the neck and at the mouth. A redundant photographic system is being used for validation. All data are collected in computer compatible format and data processing is by digital computer. Selected data in a stage of interim analysis on 18 representative human runs of the 236 human runs completed to date are presented. Review of the data indicates that peak accelerations measured at the mouth are higher than previous estimates.
Technical Paper

Occupant Compartment Updates for Side to Side Vibration in a Fuel Funny Car

2008-12-02
2008-01-2969
Nitro Fuel Funny cars have 7-8,000 hp and travel 330 mph in a quarter mile. These cars experience extreme forces in normal operation. One phenomenon familiar to drag racers is tire shake. Mild cases can cause loss of traction and vision. Extreme cases can cause injury or death. In March of 2007, a study and subsequent revision of the passenger compartment in a Fuel Funny car was performed after a fatal accident due to extreme tire shake. Tire shake on a drag race car normally occurs when the force on the rear tire causes the tire to roll over itself causing a loss of traction and side-to-side vibration. In other cases, if the tire fails at high speed, the tire may partially separate, causing an extreme vibration in the cockpit of the car. The vibration may set up a harmonic in the chassis, which is transferred to the driver since the rear end is bolted directly to the chassis with no suspension to absorb the energy.
Technical Paper

Pick-Up Truck Rear Window Tempered Glass as a Head Restraint—Head and Neck Loads Relative to Injury Reference Criteria

1984-10-01
841658
A series of rear impact tests of varying severity was performed using a mini pick-up truck with an instrumented Hybrid III dummy at the driver position. Head, neck and chest loads were monitored. The severities of these loads from an injury standpoint were assessed using biomechanically based reference criteria that are particularly suitable for the Hybrid III. The glass Installation performed well as a head restraint. Glass fracture from head impact was achieved only when the glass was predamaged, with surface scratches on the outer (tensile) side. The amazing strength and flexibility of tempered glass and the dramatic reduction in strength caused by small surface scratches are demonstrated.
Technical Paper

Race Car Nets for the Control of Neck Forces in Side Impacts

2004-11-30
2004-01-3513
Race car nets have been used for years to keep the drivers head and arms inside the structure of the race car during an accident. Recent testing by GM Racing has shown that a net placed near the driver's shoulder and head on the right side can significantly reduce head excursion and thereby reduce neck tension in a side impact. The reduced neck tension prevents neck injury and basilar skull fracture. The right side net also improves seat stiffness and reduces seat deflection in side impacts.
Technical Paper

Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation

2001-11-01
2001-22-0017
Many finite element models have been developed by several research groups in order to achieve a better understanding of brain injury. Due to the lack of experimental data, validation of these models has generally been limited. Consequently, applying these models to investigate brain responses has also been limited. Over the last several years, several versions of the Wayne State University brain injury model (WSUBIM) were developed. However, none of these models is capable of simulating indirect impacts with an angular acceleration higher than 8,000 rad/s2. Additionally, the density and quality of the mesh in the regions of interest are not detailed and sensitive enough to accurately predict the stress/strain level associated with a wide range of impact severities. In this study, WSUBIM version 2001, capable of simulating direct and indirect impacts with a combined translational and rotational acceleration of the head up to 200 g and 12,000 rad/s2 has been developed.
Technical Paper

Static Deformation and Volume Changes in the Human Skull

1968-02-01
680782
Three human male cadaver heads were statically loaded along anteroposterior, posterioanterior, side to side, and vertex to base lines of action, while simultaneously measuring skull deflections at four or five locations and intracranial volume changes. Volume changes due to loading along the long (A-P) axis were small and either increased or decreased, while loads transverse to the A-P axis decreased the volume. Transverse loads produced volume changes on the order of 10 times larger than those due to A-P forces. Two skulls loaded to fracture in the A-P direction, failed at 1150 and 2200 lb, respectively, into the right orbit. These magnitudes and linear fracture direction correspond to four fractures produced by impact to the frontal bone of intact cadavers in previous work.
Technical Paper

Testing the Validity and Limitations of the Severity Index

1970-02-01
700901
The head acceleration pulses obtained from monkey concussion, cadaver skull fracture (t = 0.002 sec), and football helmet experiments (0.006< t< 0.011 sec) have been subjected to injury hazard assessment by the Severity Index method. Although not directly applicable, the method correlates well with degree of monkey concussion. The range of Severity Indices for acceleration pulses obtained during impact to nine cadavers, all of which produced a linear fracture, was 540-1760 (1000 is danger to life) with a median value of 910. The helmet experiments showed good correlation between the Severity Index and the Wayne State University tolerance curve. These helmet tests also showed that a kinematics chart with curves of velocity change, stopping distance, average head acceleration, and time, with a superimposed Wayne State tolerance curve, can be useful in injury assessment.
Technical Paper

The Determination of Response Characteristics of the Head with Emphasis on Mechanical Impedance Techniques

1967-02-01
670911
Certain physical characteristics such as apparent mass and stiffness influence the dynamic response of the head and thereby the degree of trauma suffered from impact with another body. These characteristics are a function of frequency and can be determined by mechanical impedance measurement techniques. A force generator was attached directly to the skull and the force input and resulting motion at the point of attachment were measured respectively by a force and acceleration transducer. The magnitude as well as phase angle between these two vectors were measured over the frequency range from 5 to 5,000 Hz. A plot of the ratio of force and acceleration vs. frequency and phase angle vs. frequency on a nomograph reveal that both the apparent mass and stiffness of the head vary markedly from static values, and with location.
Technical Paper

The Development of a Model for the Study of Head Injury

1967-02-01
670923
Experiments have revealed that the brain of the experimental animal behaves elastically in response to dynamic forces in situ. The response of the skull of the human cadaver has been investigated by means of static load-deflection tests and impact and mechanical impedance tests. This information has been used to construct a two-dimensional head model consisting of a polyester resin shell reinforced with fiberglas with plexiglass sides; a clear silicone gel brain; and spinal cord simulated by a plexiglass tube containing silicone gel supported by a piston-spring assembly. Several frames taken from motion pictures recorded at 7,000 frames/sec. show how pressure gradients in the model are displayed by observing the growth and location of bubbles during impact.
X