Refine Your Search

Topic

Search Results

Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Technical Paper

An SVM-Based Method Combining AEB and Airbag Systems to Reduce Injury of Unbelted Occupants

2018-04-03
2018-01-1171
An autonomous emergency braking (AEB) system can detect emergency conditions using sensors (e.g., radar and camera) to automatically activate the braking actuator without driver input. However, during the hard braking phase, crash conditions for the restraint system can easily change (e.g., vehicle velocity and occupant position), causing an out-of-position (OOP) phenomenon, especially for unbelted occupants entering the airbag deployment range, which may lead to more severe injuries than in a normal position. A critical step in reducing the injury of unbelted occupants would be to design an AEB system while considering the effect of deployed airbags on the occupants. Thus far, few studies have paid attention to the compatibility between AEB and airbag systems for unbelted occupants. This study aims to provide a method that combines AEB and airbag systems to explore the potential injury reduction capabilities for unbelted occupants.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Dynamic Impact Loading of the Femur Under Passive Restrained Condition

1984-10-01
841661
The biodynamic response of the femur during passively restrained -Gx impact acceleration is reported in this paper. Eleven unembalmed cadavers, ranging in age from 21 to 65 and weighing from 50 to 96 kg, were tested in a VW Rabbit seat with a passive belt and knee restraint. Sectioned parts of the VW knee bolster were placed about 130 mm away from the patella at the initiation of the tests. The height of the knee bolsters was adjusted individually in the eleven tests. Ten were set for loading directly through the patella. In one run, the impact was below the knee joint. The sectioned bolsters were mounted on a rigid frame and instrumented with triaxial load cells. A six-axis load cell was installed in the right femur. Photo targets were attached directly to the femur and tibia. Sled runs were made at 22 and 35 g. Only one cadaver sustained bilateral femoral fractures at 35 g.
Technical Paper

Dynamic Response of the Spine During +Gx Acceleration

1975-02-01
751172
A review of the existing mathematical models of a car occupant in a rear-end crash reveals that existing models inadequately describe the kinematics of the occupant and cannot demonstrate the injury mechanisms involved. Most models concentrate on head and neck motion and have neglected to study the interaction of the occupant with the seat back, seat cushion, and restraint systems. Major deficiencies are the inability to simulate the torso sliding up the seat back and the absence of the thoracic and lumbar spine as deformable, load transmitting members. The paper shows the results of a 78 degree-of-freedom model of the spine, head, and pelvis which has already been validated in +Gz and -Gx acceleration directions. It considers automotive-type restraint systems, seat back, and seat cushions, and the torso is free to slide up the seat back.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
Technical Paper

Head Model for Impact

1972-02-01
720969
A human head model has been developed primarily for use in evaluation of impact attenuation properties of football helmets, but is also applicable in automobile impact safety tests. Using firm silicon rubber molds made from impressions of cadaver bones, a skull and mandible were each cast in one piece using a self-skinning urethane foam that hardens into cross section geometry similar to the human bone. A rubber gel material is used to simulate the brain. The skull and attached mandible are overlayed with repairable silicon rubber skin having puncture and sliding-over-bone characteristics similar to human skin. At present, the model has a rudimentary solid silicon rubber neck, through the center of which runs a flexible steel cable attached at the foramen magnum. The cable is used to attach the head to a carriage or anthropometric dummy and can be adjusted in tension to give various degrees of flexibility.
Technical Paper

Impact Dynamics of Unrestrained, Lap Belted, and Lap and Diagonal Chest Belted Vehicle Occupants*

1966-02-01
660788
A comparison is presented of the forces, accelerations, and kinematics of an anthropomorphic dummy for identical sled impacts for unrestrained, lap belted, and lap and diagonal chest restrained conditions. Biaxial accelerometers were mounted in the head, chest, and on the proximal end of the femur to obtain the accelerations during the impacts. Seat belt load cells were put in series with the belts at each anchor point. Biaxial load cells were positioned to be impacted by the head, chest, and each knee for the unrestrained condition and by the head and chest for the lap belted configuration. For the lap and diagonal chest restrained condition these load cells were not used. Impacts of 10 and 20 miles per hour were made with sled stopping distance of 4 and 9 inches, respectively. At 20 miles per hour the head struck with a force of 1580 pounds in the unrestrained mode, 600 pounds with the lap belt, and did not hit with the lap and shoulder harness.
Technical Paper

Introduction of Two New Pediatric Finite Element Models for Pedestrian and Occupant Protections

2016-04-05
2016-01-1492
To help predict the injury responses of child pedestrians and occupants in traffic incidents, finite element (FE) modeling has become a common research tool. Until now, there was no whole-body FE model for 10-year-old (10 YO) children. This paper introduces the development of two 10 YO whole-body pediatric FE models (named CHARM-10) with a standing posture to represent a pedestrian and a seated posture to represent an occupant with sufficient anatomic details. The geometric data was obtained from medical images and the key dimensions were compared to literature data. Component-level sub-models were built and validated against experimental results of post mortem human subjects (PMHS). Most of these studies have been mostly published previously and briefly summarized in this paper. For the current study, focus was put on the late stage model development.
Technical Paper

Investigation of Diffuse Axonal Injury in Rats Induced by the Combined Linear and Rotational Accelerations Using Diffusion Tensor Imaging

2024-04-09
2024-01-2513
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Technical Paper

Living Human Dynamic Response to —Gx Impact Acceleration II—Accelerations Measured on the Head and Neck

1969-02-01
690817
A methodical investigation and measurement of human dynamic response to impact acceleration is being conducted as a Joint Army-Navy-Wayne State University investigation. Details of the experimental design were presented at the Twelfth Stapp Car Crash Conference in October 1968. Linear accelerations are being measured on the top of the head, at the mouth, and at the base of the neck. Angular velocity is also being measured at the base of the neck and at the mouth. A redundant photographic system is being used for validation. All data are collected in computer compatible format and data processing is by digital computer. Selected data in a stage of interim analysis on 18 representative human runs of the 236 human runs completed to date are presented. Review of the data indicates that peak accelerations measured at the mouth are higher than previous estimates.
Technical Paper

Novel Method for Identifying and Assessing Rattle Noise on Vehicle Seatbelt Retractors Based on Time-Frequency Analysis

2021-03-04
2021-01-5015
Rattle noise as an error state of cabin noise in vehicles has become an important topic both in research and application. In engineering, the commonly used method to evaluate and detect rattle issues is greatly dependent on experts’ personal auditory perception. People judge a noise simply as “loud” and “not loud” or “qualified” and “unqualified.” A more objective method needs to be developed to eliminate the randomness of subjective evaluation. In this paper, a rig test of the seatbelt retractors was performed, and simulated random excitation was applied to the test samples through the MB vibration test bench in a semi-anechoic chamber. The rattle noises were recorded by HEAD SQuadriga II. Various methods were employed to identify and assess the severity of rattle noise on seatbelt retractors.
Technical Paper

Occupant Compartment Updates for Side to Side Vibration in a Fuel Funny Car

2008-12-02
2008-01-2969
Nitro Fuel Funny cars have 7-8,000 hp and travel 330 mph in a quarter mile. These cars experience extreme forces in normal operation. One phenomenon familiar to drag racers is tire shake. Mild cases can cause loss of traction and vision. Extreme cases can cause injury or death. In March of 2007, a study and subsequent revision of the passenger compartment in a Fuel Funny car was performed after a fatal accident due to extreme tire shake. Tire shake on a drag race car normally occurs when the force on the rear tire causes the tire to roll over itself causing a loss of traction and side-to-side vibration. In other cases, if the tire fails at high speed, the tire may partially separate, causing an extreme vibration in the cockpit of the car. The vibration may set up a harmonic in the chassis, which is transferred to the driver since the rear end is bolted directly to the chassis with no suspension to absorb the energy.
Technical Paper

Occupant Injury Response Prediction Prior to Crash Based on Pre-Crash Systems

2017-03-28
2017-01-1471
Occupant restraint systems are developed based on some baseline experiments. While these experiments can only represent small part of various accident modes, the current procedure for utilizing the restraint systems may not provide the optimum protection in the majority of accident modes. This study presents an approach to predict occupant injury responses before the collision happens, so that the occupant restraint system, equipped with a motorized pretensioner, can be adjusted to the optimal parameters aiming at the imminent vehicle-to-vehicle frontal crash. The approach in this study takes advantage of the information from pre-crash systems, such as the time to collision, the relative velocity, the frontal overlap, the size of the vehicle in the front and so on. In this paper, the vehicle containing these pre-crash features will be referred to as ego vehicle. The information acquired and the basic crash test results can be integrated to predict a simplified crash pulse.
Technical Paper

Preliminary study of uniform restraint concept for protection of rear-seat occupant under mid and high crash severities

2016-04-05
2016-01-1528
As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
Technical Paper

Study on Influencing Factors of Hippocampal Injury in Closed Head Impact Experiments of Rats Using Orthogonal Experimental Design Method

2023-04-11
2023-01-0001
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L9(34) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance.
Technical Paper

Study on the Key Preload Performance Parameters of an Active Reversible Preload Seatbelt (ARPS)

2018-04-03
2018-01-1175
In order to provide an improved countermeasure for occupant protection, a new type of active reversible preload seatbelt (ARPS) is presented in this paper. The ARPS is capable of protecting occupants by reducing injuries during frontal collisions. ARPS retracts seatbelt webbing by activating an electric motor attached to the seatbelt retractor. FCW (Forward Collision Warning) and LDW (Lane Departure Warning) provide signals as a trigger to activate the electric motor to retract the seatbelt webbing, thus making the occupant restraint system work more effectively in a crash. It also helps reduce occupant’s forward movement during impact process via braking. Four important factors such as preload force, preload velocity and the length and timing of webbing retraction play influential roles in performance of the ARPS. This paper focuses on studying preload performance of ARPS under various test conditions to investigate effects of the aforementioned factors.
Technical Paper

Testing the Validity and Limitations of the Severity Index

1970-02-01
700901
The head acceleration pulses obtained from monkey concussion, cadaver skull fracture (t = 0.002 sec), and football helmet experiments (0.006< t< 0.011 sec) have been subjected to injury hazard assessment by the Severity Index method. Although not directly applicable, the method correlates well with degree of monkey concussion. The range of Severity Indices for acceleration pulses obtained during impact to nine cadavers, all of which produced a linear fracture, was 540-1760 (1000 is danger to life) with a median value of 910. The helmet experiments showed good correlation between the Severity Index and the Wayne State University tolerance curve. These helmet tests also showed that a kinematics chart with curves of velocity change, stopping distance, average head acceleration, and time, with a superimposed Wayne State tolerance curve, can be useful in injury assessment.
X