Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Novel Vision-Based Framework for Real-Time Lane Detection and Tracking

2019-04-02
2019-01-0690
Lane detection is one of the most important part in ADAS because various modules (i.e., LKAS, LDWS, etc.) need robust and precise lane position for ego vehicle and traffic participants localization to plan an optimal routine or make proper driving decisions. While most of the lane detection approaches heavily depend on tedious pre-processing and great amount of assumptions to get reasonable result, the robustness and efficiency are deteriorated. To address this problem, a novel framework is proposed in this paper to realize robust and real-time lane detection. This framework consists of two branches, where canny edge detection and Progressive Probabilistic Hough Transform (PPHT) are introduced in the first branch for efficient detection.
Technical Paper

A Topological Map-Based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Technical Paper

A Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions

2000-03-06
2000-01-0242
High-speed video of combustion processes and cylinder pressure traces were obtained from a single-cylinder optical-accessible engine with a production four-valve cylinder head to study the mixture formation and flame propagation characteristics at near-stoichiometric start condition. Laser-sheet Mie-scattering images were collected for liquid droplet distributions inside the cylinder to correlate the mixture formation process with the combustion results. A dual-stream (DS) injector and a quad-stream (QS) injector were used to study the spray dispersion effect on engine starting, under different injection timings, throttle valve positions, engine speeds, and intake temperatures. It was found that most of the fuel under open-valve injection (OVI) conditions entered the cylinder as droplet mist. A significant part of the fuel droplets hit the far end of the cylinder wall at the exhaust-valve side.
Technical Paper

Aerodynamics of Open Wheel Racing Car in Pitching Position

2018-04-03
2018-01-0729
Formula One (F1) racing cars are often running at high-speed with the pitching angle changing frequently due to road conditions. These pitching angle changes result in changes to the car’s aerodynamic characteristics that will directly affect handling stability and other performance factors including safety. This paper takes a F1 racing car as the model; the influence of the change of pitching angle on aerodynamic drag force and lift force are investigated. CFD code-PowerFLOW based LBM is used to simulate the aerodynamic characteristics with different pitching angles. The distribution of aerodynamic coefficients, velocity and pressure in the flow field are obtained; and the differences between different pitching angles were analyzed. The results show that as the pitching angle increases, the drag force increases and the lift force decreases. The down-force of the car is mainly supplied by the front wing and the rear wing.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

2018-09-10
2018-01-1748
Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.
Journal Article

Analysis of Errors in Heat Release Calculations Due to Distortion of the In-Cylinder Volume Trace from Mechanical Deformation in Optical Diesel Engines

2012-09-10
2012-01-1604
Optical engines of Bowditch design may suffer from distortion of the in-cylinder volume trace due to mechanical deformation from inertial, pressure and thermal forces. Errors in heat release calculation associated with such deformation were investigated in detail. The deformations were quantified by measuring the squish height during operation using high speed video. Deformations of all-metal engines were also estimated for comparison. The volume change caused by deformations did not change the calculated load significantly but caused errors in the heat release calculations both for optical and all metal engines. The errors at a given operating condition are smaller for all-metal engines but the importance is not necessarily smaller, since these engines normally are operated at higher loads. The errors can be eliminated by a corrected in-cylinder volume equation and a subtraction of heat release from a motored case.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Technical Paper

Baxter Kinematic Modeling, Validation and Reconfigurable Representation

2016-04-05
2016-01-0334
A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing industrial tasks. The ability to work alongside humans has increased the importance of collaborative robots in the automation industry, as this unique feature is a much needed property among robots nowadays. Rethink Robotics has pioneered this unique discipline by building many robots including the Baxter Robot which is exclusive not only because it has collaborative properties, but because it has two arms working together, each with 7 Degrees Of Freedom. The main goal of this research is to validate the kinematic equations for the Baxter collaborative robot and develop a unified reconfigurable kinematic model for the Left and Right arms so that the calculations can be simplified.
Technical Paper

CFD Simulations of Pre-Chamber Jets' Mixing Characteristics in a Heavy Duty Natural Gas Engine

2015-09-01
2015-01-1890
The effect of pre-chamber volume and nozzle diameter on performance of pre-chamber ignition device in a heavy duty natural gas engine has previously been studied by the authors. From the analysis of recorded pre- and main chamber pressure traces, it was observed that a pre-chamber with a larger volume reduced flame development angle and combustion duration while at a given pre-chamber volume, smaller nozzle diameters provided better ignition in the main chamber. The structure of pre-chamber jet and its mixing characteristics with the main chamber charge are believed to play a vital role, and hence CFD simulations are performed to study the fluid dynamic aspects of interaction between the pre-chamber jet and main chamber charge during the period of flame development angle, i.e. before main chamber ignition. It has been observed that jets from a larger pre-chamber penetrates through the main chamber faster due to higher momentum and generates turbulence in the main chamber earlier.
Technical Paper

Characteristics of Direct Injection Gasoline Spray Wall Impingement at Elevated Temperature Conditions

1999-10-25
1999-01-3662
The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and doublespark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray.
Journal Article

Characterization of Diesel Common Rail Spray Behavior for Single- and Double-hole Nozzles

2008-10-06
2008-01-2424
Double-hole nozzle and multiple injections have the potential for better fuel atomization and mixing in DI engine. In order to evaluate the behavior of the spray for the double-hole nozzles against traditional single-hole ones, high-speed spray visualization was carried out using a streak film camera and a copper vapor laser, and in combination with a long-distance camera when taking microscopic movies. The spray penetration and the cone angle were measured based on the images and compared for variable injection pressures, and for single and split injections, under ambient and elevated chamber pressure conditions. The results showed that the spray of the double-hole nozzle has comparable penetration but smaller cone angle when viewed from the nozzle end, compared to the single-hole nozzle with the same total hole discharge cross-sectional area. For microscopic view, it was observed that the interaction between the dual sprays is very dynamic.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Journal Article

Comparison of In-Cylinder Soot Evolution in an Optically Accessible Engine Fueled with JP-8 and ULSD

2012-04-16
2012-01-1315
Due to the single fuel concept implemented by the US military, the soot production of diesel engines fueled with JP-8 has important implications for military vehicle visual signature and survivability. This work compares in-cylinder soot formation and oxidation of JP-8 and ULSD in a small-bore, optical diesel engine. Experimental engine-out soot emission measurements are compared to crank-angle resolved two-color measurements of soot temperature and optical thickness, KL. A 3-D chemical kinetic-coupled CFD model with line of sight integration is employed in order to investigate the soot distribution in a 2-D projection associated with the imaging plane, as well as to aid in interpreting the third dimension along the optical depth which is not available within the experimental work. The study also examines the effect of volatility on soot emission characteristics by CFD simulation.
X