Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper

A Novel Three-Planetary-Gear Power-Split Hybrid Powertrain for Tracked Vehicles

2018-04-03
2018-01-1003
Tracked vehicles are widely used for agriculture, construction and many other areas. Due to high emissions, hybrid electric driveline has been applied to tracked vehicles. The hybrid powertrain design for the tracked vehicle has been researched for years. Different from wheeled vehicles, the tracked vehicle not only requires high mobility while straight driving, but also pursues strong steering performance. The paper takes the hybrid track-type dozers (TTDs) as an example and proposes an optimal design of a novel power-split powertrain for TTDs. The commercial hybrid TTD usually adopts the series hybrid powertrain, and sometimes with an extra steering mechanism, which has led to low efficiency and made the structure more complicated. The proposed three-planetary-gear power-split hybrid powertrain can overcome the problems above by utilizing the characteristics of planetary gear sets.
Technical Paper

A Topological Map-Based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Technical Paper

A Trajectory-Based Method for Scenario Analysis and Test Effort Reduction for Highly Automated Vehicle

2019-04-02
2019-01-0139
Unlike the test of passive safety of traditional vehicles, highly automated vehicles (HAV) need more capabilities to be tested. Besides, there are more parameter combinations for the scenarios that need to be tested for each capability, resulting in a high time-consuming and costs for the autonomous vehicle tests. This paper proposes a method for scenario analysis and test effort reduction. Firstly, the trajectories of the vehicle under test (VUT) in the scenario are analyzed, and the trajectories which lead to the test mission failure are obtained. Based on the above trajectories, the threshold that lead to the test mission failure, or a combination of thresholds are analyzed. The above thresholds or a combination of thresholds values are defined as Scenario Character Parameter (SCP). The process of the analysis of the SCPs are related to the abilities of the HAV, but does not depend on the specific algorithm of the HAV.
Technical Paper

Control System Development for the Diesel APU in Off-Road Hybrid Electric Vehicle

2007-10-30
2007-01-4209
This paper developed a control system for the auxiliary power unit (APU) in off-road series hybrid electric special vehicle. A control system configuration was designed according to the requirements of the high voltage system in series hybrid electric special vehicle. Then optimal engine operating areas were defined. A gain scheduling engine speed PI controller was designed based on these areas. A closed loop voltage regulator was designed for the synchronous generator. The proposed control system was first validated on an APU control test bench. The test results showed the control system guaranteed the diesel APU good dynamic response characteristics while remaining stable output voltage. Finally, the APU control system was implemented on a diesel APU in an off-road series hybrid electric vehicle and a road test was conducted. The road test results showed the APU control system promised good performance in both vehicle dynamics and vehicle high voltage system.
Technical Paper

Estimation of Road-Tire Friction with Unscented Kalman Filter and MSE-Weighted Fusion based on a Modified Dugoff Tire Model

2015-04-14
2015-01-1601
This paper proposes an estimation method of road-tire friction coefficient for the 4WID EV(4-wheel-independent-drive electric vehicle) in the pure longitudinal wheel slip, lateral sideslip and combined slip situations, which fuses both estimated longitudinal and lateral friction coefficients together, compared with existing methods based on a tire model in one single direction. Unscented Kalman filter (UKF) is introduced to estimate one-directional friction coefficient based on a modified Dugoff tire model. Considering the output results for each direction as a signal for the same target with different noise, MSE-weighted fusion method is proposed to fuse these two results together in order to reach a higher accuracy. The tire forces are estimated with the benefits of the 4WID EV that the driving torque and rolling speed of each wheel can be accurately known. The sideslip angles and slip ratios of each tire are calculated with a vehicle kinematic model.
Technical Paper

Full Protection Scheme and Energy Optimization Management of the Battery in Internal Combustion Engine Vehicles Based on Power Partitioning Model

2019-04-02
2019-01-1205
As the only energy storage component in the internal combustion engine vehicles (ICEVs), the battery is lack of comprehensive supervision and effective protection. Excessive discharge or aging cannot be detected and dealt with, which may lead to damage of the battery, even startup failure of the vehicle. In this paper, a full protection and optimization management scheme of the battery is proposed, to achieve comprehensive protection of the battery and energy optimization. Firstly, power partitioning model of the battery is established to reveal the battery characteristics in different states, which divides the battery into several function zones. Then, based on the power partitioning model, over discharge protection and graded overcurrent protection method are proposed, to achieve full protection of the battery. Thirdly, energy optimization management strategy based on generator’s multimode operation is introduced.
X