Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Data Reduction Algorithm for Automotive Multiplexing

1998-02-23
981104
Automotive multiplexing allows sharing information among various intelligent modules inside an automotive electronic system. In order to achieve an optimum functionality, the information should be exchanged among various electronic modules in real time. New features are introduced in automobiles such as Intelligent Vehicle Highway System (IVHS), intelligent transportation support system, engine immobilizers, night vision assistance system, and automated collision avoidance and notification system. The inclusion of such features increases the data traffic over the multiplexing bus. Also, these features require very high speed and expensive bus. Data reduction techniques are used to send the data over a transmission media at high speed. Using the data reduction techniques, we will be able to include new features in automobiles without the need of a high speed bus. Since the automotive environment is different, a special data reduction algorithm is mandated.
Technical Paper

An Improved Adaptive Data Reduction Protocol for In-Vehicle Networks

2006-04-03
2006-01-1327
The demand for drive-by-wire, pre-crash warning and many other new features will require high bandwidth from the future in-vehicle networks. One way to satisfy the high bandwidth requirement of future vehicles is to use a higher bandwidth bus or multiple busses. However, the use of a higher bandwidth bus will increase the cost of the network. Similarly, the use of multiple buses will increase cost as well as the complexity of wiring. Thus, neither option is a viable solution. Another option could be the development of a higher layer protocol to reduce the amount of data to be transferred. The higher layer protocol could be acceptable provided it does not increase the message latencies. The cost of implementing the protocol will be marginal because it can be done by making changes in software. Various data reduction protocols are available in the literature. We have made changes in the existing data reduction protocols to improve the performance of the protocol.
Technical Paper

Decentralized Secure Protocol for Inter-Vehicle Communication Networks

2006-04-03
2006-01-1493
In this paper, we propose a secure protocol for inter-vehicle communication (IVC) networks without the use of centralized roadside infrastructure. Future vehicles may use wireless IVC networks to exchange safety-critical information among each other. IVC networks do not have a centralized control, and instead rely on vehicles to coordinate with each other to exchange information. Because of the open medium, security is a concern in IVC networks. Vehicles need a mechanism to authenticate the safety-critical information that will be exchanged in IVC networks. A trusted third party Certificate Authority (CA) can provide such a mechanism through public-key certificates. However, the disadvantage of using public-key certificates is that drivers can identify each other. The certificate will allow drivers to trace each other's movements and will raise a privacy concern.
Technical Paper

Group Key Management for Secure Multicasting in Remote Software Upload to Future Vehicles

2006-04-03
2006-01-1584
In future, updating various software modules in vehicles on a regular basis will be required for various reasons such as update functionalities in the existing system, add new functionalities, remove software bugs, update navigation map etc. For updating software to a large number of vehicles, remote updating using mobile multicasting would be the most efficient and economic than unicast updating in service station. However, the security requirement of multicast communication, i.e., confidentiality and integrity of the information transmitted and authenticity of the group members, is challenging. In this paper, we investigate issues in designing key management architectures for secure multicast network, particularly for remote software update in future vehicles. Vehicular software distribution network is considered as wireless network where vehicles are connected to the software distributors through base stations.
Technical Paper

Latency Analysis for Inter-Vehicle Communications

2006-04-03
2006-01-1330
The study done by the U.S. National Highway Traffic Safety Administration (NHTSA) shows that developing automotive collision warning and avoidance systems will be very effective in order to significantly reduce fatalities, injuries and associated costs. In order to develop an automotive collision warning and avoidance system, it will be necessary that the vehicles should be able to exchange (in real-time) their dynamic information such as speed, acceleration, direction, relative position, status of some devices like brake, steering wheel, gas pedal, etc. The only feasible way to exchange the vehicles’ dynamic information will be through the use of wireless communication technology. However, the wireless link setup time and communication latencies should be under certain bounds so that the vehicles can appropriately react on time to avoid collisions. This paper will present results from an experimental setup that simulates inter-vehicle communications.
Technical Paper

Security Needs for the Future Intelligent Vehicles

2006-04-03
2006-01-1426
The need for active safety, highway guidance, telematics, traffic management, cooperative driving, driver convenience and automatic toll payment will require future intelligent vehicles to communicate with other vehicles as well as with the road-side infrastructure. However, inter-vehicle and vehicle to roadside infrastructure communications will impose some security threats against vehicles' safety and their proprietary information. To avoid collisions, a vehicle should receive messages only from other authentic vehicles. The internal buses and electronics of a vehicle must also be protected from intruders and other people with malicious intents. Otherwise, a person can inject incorrect messages into an authentic vehicle's internal communication system and then make the vehicle transmit wrong information to the other vehicles within the vicinity. Such an event may have catastrophic consequences. Thus, a detailed study of the security needs of the future vehicles is very important.
X