Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Cycle-to-Cycle Variation in the Injection Pressure in a Common Rail Diesel Injection System on Engine Performance

2003-03-03
2003-01-0699
The performance of the Common Rail diesel injection system (CRS) is investigated experimentally in a single cylinder engine and a test rig to determine the cycle-to-cycle variation in the injection pressure and its effects on the needle opening and rate of fuel delivery. The engine used is a single cylinder, simulated-turbocharged diesel engine. Data for the different injection and performance parameters are collected under steady state conditions for 35 consecutive cycles. Furthermore, a mathematical model has been developed to calculate the instantaneous fuel delivery rate at various injection pressures. The experimental results supported with the model computations indicated the presence of cycle-to-cycle variations in the fuel injection pressure and needle lift. The variations in the peak-cylinder gas pressure, rate of heat release, cylinder gas temperature and IMEP are correlated with the variation in the injection rate.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Technical Paper

Effect of Load and Other Parameters on Instantaneous Friction Torque in Reciprocating Engines

1991-02-01
910752
The effect of many operating parameters on the instantaneous frictional (IFT) torque was determined experimentally in a single cylinder diesel engine. The method used was the (P - ω)method developed earlier at Wayne State University. The operating parameters were load, lubricating oil grade, oil, temperature and engine speed. Also IFT was determined under simulated motoring conditions, commonly used in engine friction measurements. The results showed that the motoring frictional torque does not represent that under firing conditions even under no load. The error reached 31.4% at full load. The integrated frictional torque over the whole cycle and the average frictional torque were determined. A comparison of the average frictional torque under load was compared with the average motoring torque.
X