Refine Your Search

Topic

Search Results

Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Journal Article

Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber

2015-04-14
2015-01-0649
Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
Technical Paper

Configuration Analysis and Performance Comparison of Drive Systems for Pure Electric Vehicle

2015-04-14
2015-01-1165
Many kinds of drive systems can be adopted by a pure electric vehicle. In order to select the most suitable drive system, the configuration features of different drive systems were analyzed. After matching the drive systems in a pure electric vehicle, the dynamic performance comparison has been carried out; and on the basis of establishing the vehicle energy consumption model and taking the city driving cycle as an example, the economic comparison of these drive systems has been completed.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Costs, Benefits and Range: Application of Lightweight Technology in Electric Vehicles

2019-04-02
2019-01-0724
The lightweight technology takes an important role in electric vehicle(EV) energy conservation domain, as lighter vehicle means less energy consumed under same condition. In this paper, the typical energy requirement in an NEDC cycle is investigated, and the relationship between lightweight rate and energy consumption reduction effectiveness is given. The benefit of lightweight to EV come from the less battery cost because of less energy requirement. For EVs, with less battery cost, a certain lightweight rate can be obtained with less total cost. On the other hand, if lightweight rate is very high, the battery cost won't be able to cover the lightweight cost. Besides, the relationship between driving range and battery capacity is discussed in this paper. It is found that there is a limitation of EV driving range, which is determined by the battery energy density.
Technical Paper

Design and Control of Thermal Management System for the Fuel Cell Vehicle in Low-Temperature Environment

2020-04-14
2020-01-0851
In low-temperature environment, heat supply requires considerable energy, which significantly increases energy consumption and shortens the mileage of electric vehicle. In the fuel cell vehicles, waste heat generated by the fuel cell system can supply heat for vehicle. In this paper, a thermal management system is designed for a the fuel cell interurban bus. Thermal management strategy aiming at temperature regulation for the fuel cell stack and the passenger compartment and minimal energy consumption is proposed. System model is developed and simulated based on AMESim and Matlab/Simulink co-simulation. Simulation results show that the fuel cell system can provide about 78 % energy of maximum heat requirement in -20 °C ambient temperature environment.
Technical Paper

Design and Testing of a Novel Multiple-Disc Magneto-Rheological Clutch Applied in Vehicles

2015-04-14
2015-01-1133
In recent years, Magneto-rheological (MR) fluid has drawn a lot of attention for its applications in a variety of torque transmission devices, such as brakes, clutches and soft starters of mechanical equipment. Compared with the conventional clutch of vehicle, the novel MR clutch has the advantages of fast response with electronic signal, accuracy control and simple structure without mechanical wear in plates. Besides, MR clutch may be helpful to fast response of vehicle in some situation. Nowadays, most applications of MR fluids in the torque transmission field mainly are used in low-power situation. As far as we know, the proposed effective methods enhancing the output torque of MR devices will increase either the number of fluid gaps or the magnetic field in the MR fluid. This article presents a novel vehicle clutch utilizing magnetorheological fluid and multiple-disc structure.
Technical Paper

Design, Testing and Analysis of a Novel Multiple-Disc Magnetorheological Braking Applied in Vehicles

2015-04-14
2015-01-0724
This paper presents a new magnetorheological braking which can be used in vehicles. Magneto-rheological (MR) fluid is a novel material which can be used in different components of vehicle. Magneto-rheological fluids (MRF) are suspensions of micron size whose yield stress varies rapidly as the change of magnetic field. The use of MRF in vehicles has been gaining popular recently due to its strong rheological effect, fast response and low energy consumption. Besides, these performances give designers more choice in automotive designs. However, most of the related research of MRF brake is about the construction of small prototype to verify its rheological performance. As a result, research progress is limited to calculation and simulation which make the braking force of prototype can hardly meet the requirement of vehicle due to a lack of optimal design and the understanding of MRF in the situation of high sheer stress and magnetic field.
Technical Paper

Development of the Hybrid Supervisory Controller for a Pre-Transmission Hybrid Electric Vehicle for Year 3 of the EcoCAR3 Competition

2018-04-03
2018-01-1012
This paper details the Wayne State University development of the Hybrid Supervisory Controller strategies for the Year 3 of the EcoCAR 3 competition. Included in this paper are the processes for developing the strategies for the supervisory control system, which includes the torque distribution among the powertrain components, and the diagnostic strategies adopted to guarantee the safety critical functionalities of the vehicle. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. During the Year 3 of the competition the team has refined the control strategies designed in the previous years, to enable the powertrain full functionalities and achieve better energy consumption over pre-determined drive cycles.
Technical Paper

Energy Dissipation Characteristics Analysis of Automotive Vibration PID Control Based on Adaptive Differential Evolution Algorithm

2024-04-09
2024-01-2287
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared.
Technical Paper

Full Protection Scheme and Energy Optimization Management of the Battery in Internal Combustion Engine Vehicles Based on Power Partitioning Model

2019-04-02
2019-01-1205
As the only energy storage component in the internal combustion engine vehicles (ICEVs), the battery is lack of comprehensive supervision and effective protection. Excessive discharge or aging cannot be detected and dealt with, which may lead to damage of the battery, even startup failure of the vehicle. In this paper, a full protection and optimization management scheme of the battery is proposed, to achieve comprehensive protection of the battery and energy optimization. Firstly, power partitioning model of the battery is established to reveal the battery characteristics in different states, which divides the battery into several function zones. Then, based on the power partitioning model, over discharge protection and graded overcurrent protection method are proposed, to achieve full protection of the battery. Thirdly, energy optimization management strategy based on generator’s multimode operation is introduced.
Technical Paper

High-Power Synchronous Rectification Drive Power System Based on PID Control

2022-03-29
2022-01-0720
The driving power system can be combined with lasers, lights, etc., and applied to automobiles to achieve various functions. Under the general trend of the development of intelligent vehicles, people have higher and higher requirements for the accuracy and power of various equipment. However, as power increases, how to ensure the stability of factors such as current is a challenging problem. Therefore, it is extremely important to study and design a high-power drive system in this paper, so as to ensure a stable output of the current. The system is composed of power supply, load, secondary power supply and control chip. The choice of power supply and load is conventional model. The secondary power supply adopts step-down circuit, with synchronous rectifier chip, which can effectively reduce energy consumption, and with temperature protection device, which can ensure the safe and reliable operation of equipment.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Technical Paper

Intelligent Deceleration Energy-Saving Control Strategy for Electric Vehicle

2021-04-06
2021-01-0123
In order to improve the vehicle economy of electric vehicles, this paper first analyzes the energy-saving mechanism of electric vehicles. Taking the energy consumption of the deceleration process as a starting point, this paper deeply analyzes the energy consumption of the deceleration process under several different control modes by the test data, so as to obtain two principles that should be followed in energy-saving control strategy. Then, an intelligent deceleration energy-saving control strategy by getting the forward vehicle information is developed. The overall architecture of the control strategy consists of three parts: information processing, target calculation and torque control. The first part is mainly to obtain the forward vehicle information from the perception systems, and the user's habits information from big data, and this information is processed for the next part.
Technical Paper

Mechanism of Neutral-Idle Shudder Phenomenon in an Automatic Transmission System

2016-04-05
2016-01-1128
Neutral-idle strategy has been applied for years to improve the fuel consumption of automatic transmission cars. The updated demand is the use of expanded slipping control strategy for further improvement of the transmission efficiency and response speed. However, one major drawback of the continuous slipping clutches is the high tendency to produce shudder or low frequency variation. In this research, a special neutral-idle shudder phenomenon is presented. This special shudder is not only related to slipping clutches but also related to the vibration and structure of the powertrain system. Simulations and experiments are conducted to give an insight view of this phenomenon. The analysis reveals that this special shudder is caused by both torsional vibration of the driveline and rigid-body vibration of the powertrain system. A positive feedback loop between those two kinds of vibrations leads to this special neutral-idle shudder.
Technical Paper

New Paradigm in Robust Infrastructure Scalability for Autonomous Applications

2019-04-02
2019-01-0495
Artificial Intelligence (A.I.) and Big Data are increasing become more applicable in the development of technology from machine design and mobility to bio-printing and drug discovery. The ability to quantify large amounts of data these systems generate will be paramount to establishing a robust infrastructure for interdisciplinary autonomous applications. This paper purposes an integrated approach to the environment, pre/post data processing, integration, and system security for robust systems in intelligent transportation systems. The systems integration is based on a FPGA embedded system design and computing (EDGE) platform utilizing image processing CNN algorithms from High Energy Physics (HEP) experiments in data centers with associative memory to ROS- FPGA technology in vehicles for hyper-scale infrastructure scalability. The ability to process data in the future is equivalent to collision particle detection that the Large Hadron Collider (LHC) produces at CERN.
Technical Paper

Objective Evaluation Model of Automatic Transmission Shift Quality Based on Multi-Hierarchical Grey Relational Analysis

2018-04-03
2018-01-0405
Improvement of shift quality evaluation has become more prevalent over the past few years in the development of automatic transmission electronic control system. For the problems of the subjective shift quality evaluation that subjectivity is too strong, the standard cannot be unified and the definition of the objective evaluation index is not clear at present, this paper studies on the methods of objective evaluation of shift quality based on the multi-hierarchical grey relational analysis. Firstly, objective evaluation index system is constructed based on physical quantities, such as the engine speed, the longitudinal acceleration of the vehicle and so on, which broadens the scope of the traditional objective evaluation index further.
Technical Paper

On-Road and Chassis Dynamometer Evaluation of a Pre-Transmission Parallel PHEV

2019-04-02
2019-01-0365
This paper details the vehicle testing activities performed during the Year 4 of the EcoCAR 3 competition by the Wayne State University team on a Pre-Transmission Parallel PHEV. The paper focuses on two main testing platforms: the chassis dynamometer and the closed-course track (on-road). The focus of the former is to evaluate the emissions and energy consumption associated with different driving scenarios, while the latter has been used to assess the vehicle performance and their impact on the consumer appeal. The paper presents the objectives of each test, the setup accomplished for the different vehicle testing platforms, the results obtained and the comparison with the values expected from simulations. In addition, the impact of the results on the refinement of the control strategies and on the validation of the simulation models are discussed.
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
X