Refine Your Search

Topic

Search Results

Technical Paper

A Method for Vehicle Occupant Height Estimation

2017-03-28
2017-01-1440
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Cadaver Knee, Chest and Head Impact Loads

1967-02-01
670913
Human tolerance to knee, chest, and head impacts based upon skeletal fracture of cadavers is reported. The results are based upon unrestrained cadaver impacts in a normal seated position in simulated frontal force accidents at velocities between 10 and 20 mph and stopping distances of 6-8 in. The head target was covered with 15/16 in. of padding. No skull or facial fractures were observed at loads up to 2640 lb. Extensive facial fractures and a linear skull fracture occurred during the application of the maximum head force of 4350 lb. The chest target was 6 in. in diameter with 15/16 in.of padding. The padding was rolled over the edge of the target to minimize localized high force areas on the ribs. A 1/8 in. diameter rod was inserted through the chest and fastened through a ball joint and flange to the soft tissue at the sternum.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Dynamic Response of the Human Cadaver Head Compared to a Simple Mathematical Model

1968-02-01
680784
It is shown that the response of the occiput of a cadaver to sinusoidal vibration input to the frontal bone corresponds closely to that of a simple damped spring-mass system having a natural frequency equal to the first mode frequency of the skull, 0.17 damping factor. The first and third bending mode of the skull occurred near 300 and 900 Hz for both the cadaver preparation with silicon gel filled cranial cavity and the live human head. A second mode was found near 600 Hz in the live human. Head acceleration levels at which opposite pole pressure reached near —1 atm were 170 g and 500–600 g in the human cadaver and live monkey head, respectively, which values are roughly inversely proportional to major intracranial diameters. A method is derived for comparing the impact response of a simple system to a general shaped pulse to that of the cadaver head.
Technical Paper

Dynamic Response of the Spine During +Gx Acceleration

1975-02-01
751172
A review of the existing mathematical models of a car occupant in a rear-end crash reveals that existing models inadequately describe the kinematics of the occupant and cannot demonstrate the injury mechanisms involved. Most models concentrate on head and neck motion and have neglected to study the interaction of the occupant with the seat back, seat cushion, and restraint systems. Major deficiencies are the inability to simulate the torso sliding up the seat back and the absence of the thoracic and lumbar spine as deformable, load transmitting members. The paper shows the results of a 78 degree-of-freedom model of the spine, head, and pelvis which has already been validated in +Gz and -Gx acceleration directions. It considers automotive-type restraint systems, seat back, and seat cushions, and the torso is free to slide up the seat back.
Technical Paper

Effect of Long-Duration Impact on Head

1972-02-01
720956
Impacts have been analyzed in terms of degree of injury, head injury criterion (HIC), and average acceleration as a function of time for frontal impacts against the following surfaces: 1. Rigid flat surface-fractured cadaver skull. 2. Astroturf-head drop of football-helmeted cadaver. 3. Windshield penetrating impact of a dummy. 4. Airbag-dynamic test by human volunteers. It is concluded that the linear acceleration/time concussion tolerance curve may not exist and that only impacts against relatively stiff surfaces producing impulses with short rise times can be critical. The authors hypothesize that if a head impact does not contain a critical HIC interval of less than 0.015 s, it should be considered safe as far as cerebral concussion is concerned.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
Technical Paper

Fracture Behavior of the Skull Frontal Bone Against Cylindrical Surfaces

1970-02-01
700909
A test program has been conducted to determine the fracture behavior of the human frontal bone against two different rigid cylindrical surfaces; one surface was of 1 in. radius and one was of 5/16 in. radius; both were 6½ in. long. The purpose of this research program was to provide human tolerance data which would: 1. Assist in the design of structures likely to be impacted by the human head. 2. Extend the calibration range of frangible headforms. Twelve cadavers were tested in this program; seven against the 1 in. radius cylinder and five against the 5/16 in. radius cylinder. The test arrangement employed a guided drop of the test surface against a stationary head which was free to rebound. Drop heights were increased progressively until borderline fractures were obtained. The large radius shape consistently yielded linear fractures indicating that it is effectively a blunt surface. Fracture loads ranged 950-1650 lb.
Technical Paper

Frequency Response and Coupling of Earpiece Accelerometers in the Human Head

2006-12-05
2006-01-3657
Currently, there is great interest in motorsports medicine in measuring driver head impact accelerations by adding small triaxial accelerometers to the communication earpieces worn by drivers. Various studies have attempted to validate the ability of the earpiece accelerometers to accurately measure head accelerations. Those experiments demonstrate success in being able to measure head accelerations on dummies and humans in low severity impacts and non-impact head motion. No study has been performed to ascertain the ability of the earpiece accelerometers to accurately measure rigid body head accelerations of the skull when they are mounted in a human ear canal and subjected to high severity head accelerations. This research was performed to evaluate the frequency response and coupling of the earpiece accelerometers to the human skull using post mortem human subject (PMHS) heads as the most realistic surrogate for the living human.
Technical Paper

Head Model for Impact

1972-02-01
720969
A human head model has been developed primarily for use in evaluation of impact attenuation properties of football helmets, but is also applicable in automobile impact safety tests. Using firm silicon rubber molds made from impressions of cadaver bones, a skull and mandible were each cast in one piece using a self-skinning urethane foam that hardens into cross section geometry similar to the human bone. A rubber gel material is used to simulate the brain. The skull and attached mandible are overlayed with repairable silicon rubber skin having puncture and sliding-over-bone characteristics similar to human skin. At present, the model has a rudimentary solid silicon rubber neck, through the center of which runs a flexible steel cable attached at the foramen magnum. The cable is used to attach the head to a carriage or anthropometric dummy and can be adjusted in tension to give various degrees of flexibility.
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Investigation into Qualitative Dynamic Characteristics Analysis of Hydraulically Damped Rubber Mount for Vehicle Engine

2009-05-19
2009-01-2132
Hydraulically damped rubber mount (HDM) can effectively attenuate vibrations transmitting between automotive powertrain and body/chassis, and reduce interior noise of car compartment. This paper involves an analytical qualitative analysis approach of dynamics characteristics of HDM. Analysis of experimental results verifies the effectiveness of the qualitative analysis approach. Frequency- and amplitude-dependent dynamic characteristic of HDM are investigated to clarify working mechanism of HDM. The presented qualitative analysis approach provides a convenient performance adjustment guideline of HDM to meet vibration isolation requirements of powertrain mount system.
Technical Paper

Investigation of the Kinematics and Kinetics of Whiplash

1967-02-01
670919
The kinematics of rear-end collisions based on published acceleration pulses of actual car-to-car collisions (10 and 23 mph) were reproduced on a crash simulator using anthropomorphic dummies, human cadavers, and a volunteer. Comparison of the responses of subjects without head support were based on the reactions developed at the base of the skull (occipital condyles). The cadavers gave responses which were representative of persons unaware of an impending collision. The responses of both dummies used were not comparable with those of the cadavers or volunteer, or to each other. An index based on voluntary human tolerance limits to statically applied head loads was developed and used to determine the severity of the simulations for the unsupported head cases. Results indicated that head torque rather than neck shear or axial forces is the major factor in producing neck injury.
Technical Paper

Laser Welding of Elastomers to Polypropylene

2003-03-03
2003-01-1134
The effects of varying laser-welding parameters were studied for the welding of the thermoplastic elastomer EPDM to glass filled polypropylene. Through-thickness scanning transmission welding (contour welding) was carried out with a diode laser with a wavelength of 940 nm using various power levels up to 150W and line speeds up to 2500 mm/minute. The observable weld attributes: weld strengths, weld widths, and failure modes, have been tabulated and discussed.
Technical Paper

Living Human Dynamic Response to —Gx Impact Acceleration II—Accelerations Measured on the Head and Neck

1969-02-01
690817
A methodical investigation and measurement of human dynamic response to impact acceleration is being conducted as a Joint Army-Navy-Wayne State University investigation. Details of the experimental design were presented at the Twelfth Stapp Car Crash Conference in October 1968. Linear accelerations are being measured on the top of the head, at the mouth, and at the base of the neck. Angular velocity is also being measured at the base of the neck and at the mouth. A redundant photographic system is being used for validation. All data are collected in computer compatible format and data processing is by digital computer. Selected data in a stage of interim analysis on 18 representative human runs of the 236 human runs completed to date are presented. Review of the data indicates that peak accelerations measured at the mouth are higher than previous estimates.
X