Refine Your Search

Topic

Search Results

Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Technical Paper

A Neural Network Approach for Predicting Collision Severity

2014-04-01
2014-01-0569
The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity. The model output, collision severity, is divided into three categories - fatal, injury, and property damage only.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

2009-04-20
2009-01-1482
Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Technical Paper

An Innovative Design of In-Tire Energy Harvester for the Power Supply of Tire Sensors

2018-04-03
2018-01-1115
With the development of intelligent vehicle and active vehicle safety systems, the demand of sensors is increasing, especially in-tire sensors. Tire parameters are essential for vehicle dynamic control, including tire pressure, tire temperature, slip angle, longitudinal force, etc.. The diversification and growth of in-tire sensors require adequate power supply. Traditionally, embedded batteries are used to power sensors in tire, however, they must be replaced periodically because of the limited energy storage. The power limitation of the batteries would reduce the real-time data transmission frequency and deteriorate the vehicle safety. Heightened interest focuses on generating power through energy harvesting systems in replace of the batteries. Current in-tire energy harvesting devices include piezoelectric, electromagnetic, electrostatic and electromechanical mechanism, whose energy sources include tire deformations, vibrations and rotations.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Analyzing Traffic Accident Causations in China Based on Neural Network Combined

2008-04-14
2008-01-0533
Clarifying accident causations can provide a strong foundation to prevent traffic accidents and reduce severities. This paper uses Chinese government census data from 1996-2003[1∼8] and models a relationship between various kinds of traffic accident causations and the severities of the traffic accidents based on neural network combined (NNC). The paper adapts multi-folder cross validation concept to enhance the properties of NNC. It then conducts sensitivity analysis on the trained NNC to identify the prioritized importance of traffic accident causations as they are to the severities of traffic accident. Lastly, the results are validated and compared by the findings of previous researches.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Driver Behavior Characteristics Identification Strategy for Adaptive Cruise Control System with Lane Change Assistance

2017-03-28
2017-01-0432
Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
Technical Paper

Driving Behavior Prediction at Roundabouts Based on Integrated Simulation Platform

2018-04-03
2018-01-0033
Due to growing interest in automated driving, the need for better understanding of human driving behavior in uncertain environment, such as driving behavior at un-signalized crossroad and roundabout, has further increased. Driving behavior at roundabout is greatly influenced by different dynamic factors such as speed, distance and circulating flow of the potentially conflicting vehicles, and drivers should choose whether to leave or wait at the upcoming exit according to these factors. In this paper, the influential dynamic factors and driving behavior characteristics at the roundabout is analyzed in detail, random forest method is then deployed to predict the driving behavior. For training the driving behavior model, four typical roundabout layouts were created under a real-time driving simulator with PanoSim-RT and dSPACE. Traffic participants with different motion style were also set in the simulation platform to mimic real driving conditions.
Technical Paper

Energetic Macroscopic Representation Based Energy Management Strategy for Hybrid Electric Vehicle Taking into Account Demand Power Optimization

2017-10-08
2017-01-2208
To further explore the potential of fuel economy for hybrid electric vehicle (HEV), a methodology of demand power optimization is proposed. The fuel consumption depends not only on the EMS, but also on the way to operate vehicle. A control strategy to adjust driver’s demand before power splitting is necessary. To get accurate and reliable control strategy, two aspects are the most important. First, a rigorous and organized modeling approach is a base to describe complicated powertrain system of HEV. The energetic macroscopic representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. A powertrain architecture of HEV is described explicitly via the EMR. Second, the effectiveness of EMS and the reasonability of driving operations are vital.
Technical Paper

Feasibility Study of Using WLTC for Fuel Consumption Certification of Chinese Light-Duty Vehicles

2018-04-03
2018-01-0654
This paper presents the feasibility study of using the worldwide harmonized light vehicles test cycle (WLTC) for the fuel consumption certification of Chinese Light-duty (LD) vehicles. First, the key steps and the technical routes of the development process of WLTC are summarized. Second, the operation data of 3082 vehicles in 41 typical cities of China are collected throughout the year. Then, the characteristics of the acquisition data are compared with WLTC. Finally, the feasibility of using WLTC for fuel consumption certification of Chinese LD vehicles is analyzed in three aspects, includes operation characteristics, weighting factors and fuel consumption. The result shows that there is obvious difference between WLTC and Chinese reality, and WLTC is not suitable for the fuel consumption certification of Chinese LD vehicles.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Technical Paper

Improving Virtual Durability Simulation with Neural Network Modeling Techniques

2005-04-11
2005-01-0483
Neural networks are flexible modeling tools that can be used in conjunction with multi-body dynamics models to better predict nonlinear behaviour of components. This paper focuses on a process that incorporates a neural network model of a nonlinear damping force into a single degree of freedom mass-spring-damper model. Software tools and their interaction are specified. The verification of this process is the focal point of this paper and is a necessary step before further correlation studies can be performed on more complex component representations.
Technical Paper

Integrated System Simulation for Turbocharged IC Engines

2008-06-23
2008-01-1640
An integrated simulation platform for turbocharged internal combustion engines has been developed. Multi-dimensional computational fluid dynamic (CFD) codes are integrated into the system to model the turbocharging circuit, gas circuit, in-cylinder circuit, coolant and oil circuits. As the turbocharger is a critical factor for the IC engine, a turbocharger through-flow model based on mass, momentum, and energy conservation equations has been developed and added in the integrated platform. Compared with the traditional MAP method, the through-flow model can solve the problems of transient matching and lack of numerous experimental maps during the pre-prototype engine design. Partial systems in the integrated platform, such as the in-cylinder flow and combustion circuit, can be modeled by 3-D CFD codes for the investigation of the detailed flow patterns.
Technical Paper

Mode Transition Dynamic Control for Dual-Motor Hybrid Driving System

2013-10-14
2013-01-2487
Coordinated control of mode transition is an important part of the multi-mode hybrid vehicles' control strategy, combined with a vehicle torque distribution strategy to realize an optimal working condition of the power sources, as well as achieve smooth mode switching. This paper builds hybrid electric vehicle driveline dynamics model and depth analyzes drive mode transition process, coordinated control methods were provided to solve three types of mode switching, neural network algorithm was provided to estimate the engine torque. The results show that coordinated control can reduce torque fluctuations and decrease jerk during the transition of different modes to improve the vehicle drivability.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

2018-04-03
2018-01-0146
This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
Technical Paper

New Paradigm in Robust Infrastructure Scalability for Autonomous Applications

2019-04-02
2019-01-0495
Artificial Intelligence (A.I.) and Big Data are increasing become more applicable in the development of technology from machine design and mobility to bio-printing and drug discovery. The ability to quantify large amounts of data these systems generate will be paramount to establishing a robust infrastructure for interdisciplinary autonomous applications. This paper purposes an integrated approach to the environment, pre/post data processing, integration, and system security for robust systems in intelligent transportation systems. The systems integration is based on a FPGA embedded system design and computing (EDGE) platform utilizing image processing CNN algorithms from High Energy Physics (HEP) experiments in data centers with associative memory to ROS- FPGA technology in vehicles for hyper-scale infrastructure scalability. The ability to process data in the future is equivalent to collision particle detection that the Large Hadron Collider (LHC) produces at CERN.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
X