Refine Your Search



Search Results

Technical Paper

A Comparison of Wing Stowing Designs Focused on Increased Continuous Payload Volume for Projectile Applications

West Virginia University's Mechanical and Aerospace Engineering Department is studying the benefits of continuous payload volume in transforming projectiles. Continuous payload volume is the single largest vacancy in a vehicle that may be utilized. Currently there is a market for transforming projectiles, which are gun launched (or tube launched) vehicles stowed in an initial configuration; which deploy wings once exiting the launcher to become small unmanned aircraft. WVU's proposed design uses a helical hinge, which allows the wing sections to be externally stowed outside the UAV's fuselage. Additionally, the design positions the vehicles wing sections sub-bore (or smaller than the guns internal diameter), and flush (smooth and planer) to the surface of the fuselage. The typical transforming winged projectile design considered, stores its wing sections along the center axis of the fuselage. This bisects the payload space and limits the continuous payload carrying potential.
Technical Paper

A Continuously Variable Power Split Transmission for Automotive Applications

Continuously variable transmissions, commonly known as CVT's, have been shown to be feasible alternatives to the conventional multi-step gear transmissions (standard or automatic) typically used in automotive applications. Most CVT applications, however, rely on a shaft-to-shaft transmission arrangement, in which the belt-sheave action limits the load capacity of the transmission, particularly at the high power ranges (low speed, high torque). In this paper, a system based on a combined planetary gear train and a continuously variable pulley system is presented. The uniqueness of this arrangement is that the variable pulleys provide a power/torque split and recirculation function, which, when combined with the planetary gear train function, produces a continuously variable power split transmission system.
Technical Paper

A Controller for a Spark Ignition Engine with Bi-Fuel Capability

A bi-fuel engine with the ability to run optimally on both compressed natural gas (CNG) and gasoline is being developed. Such bi-fuel automotive engines are necessary to bridge the gap between gasoline and natural gas as an alternative fuel while natural gas fueling stations are not yet common enough to make a dedicated natural gas vehicle practical. As an example of modern progressive engine design, a Saturn 1.9 liter 4-cylinder dual overhead cam (DOHC) engine has been selected as a base powerplant for this development. Many previous natural gas conversions have made compromises in engine control strategies, including mapped open-loop methods, or resorting to translating the signals to or from the original controller. The engine control system described here, however, employs adaptive closed-loop control, optimizing fuel delivery and spark timing for both fuels.
Technical Paper

A Correlation Study Between Two Heavy-Duty Vehicle Chassis Dynamometer Emissions Testing Facilities

A correlation study of vehicle exhaust emissions measurements was conducted by the West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory and the Los Angeles County Metropolitan Transportation Authority (MTA) Emissions Testing Facility. A diesel fueled transit bus was tested by both chassis dynamometer emissions testing laboratories. Exhaust emissions were sampled from the tested vehicle during the operation of the Federal Transit Administration (FTA) Central Business District (CBD) testing cycle. Data of gaseous and particulate matter emissions was obtained at each testing laboratory. The emissions results were compared to evaluate the effects of different equipment, test procedures, and drivers on the measurements of exhaust emissions of heavy-duty vehicles operated on a chassis dynamometer.
Technical Paper

A Double Planetary Gear Train-CVT Transmission with Multiple Applications

A family of transmission systems based on a “Planetary Gear - CVT” mechanism is presented here. The systems considered consist of two compound planetary gear trains connected through a CVT pulley system to provide the power/torque split and recirculation function, without the use of additional clutches and/or chain drives. A two degree of freedom system results in which one of the degrees of freedom is directly related to the CVT ratio. The mechanisms considered here combine the gear reduction function of compound planetary gear trains with the continuously variable trans- used as a circulating power control unit. The kinematics and dynamics of this family of systems is presented with emphasis on the belt forces, torques on the various shafts and the overall input/output velocity ratios through the CVT ratio span. Then a parametric analysis is conducted to characterize the effect of the various functional ratios and parameters of the system in terms of the overall performance.
Technical Paper

A Model for a Planetary - CVT Mechanism: Analysis and Synthesis

This paper describes the strategy for engineering design, modeling, and analysis of a planetary - CVT (Continuously Variable Transmission) system. The uniqueness of this mechanism arrangement resides in the combination of features associated to two conventional systems, namely a planetary gear train and a CVT pulley system, acting as a power circulation control unit. The pulley system features a manually activated control over the variable pitch ratios of the CVT, by means of which the overall system input/output velocity and power ratios can be controlled according the operational requirements. By using the belt drive as a feedback control unit (as opposed to the main driveline), one of the major problems or limitations of conventional CVT arrangements is overcome, namely the belt capacity of the system. Specifically, the output torque obtained through the planetary output shaft is greater than the torque circulating through the pulleys.
Technical Paper

A Parametric Study of Laminated Composite Shells with Environmental Effects, Using a Higher-Order FE Model

In this study a higher-order shear deformable, analytical model is developed to analyze composite shells with parametric modeling capabilities. The material and geometric properties and loading conditions can be varied as parameters which satisfy a set of constraints to allow the designer to achieve a sensible and computationally feasible FE model. The formulation is derived with equal emphasis on all the six strain as well as stress components at a generic point in the shell laminate. Unlike many other available models which violates the equilibrium conditions at lamina interfaces, this model satisfies the equilibrium conditions at the lamina interfaces for a certain class (angle-ply and unidirectional orthotropic) of laminates.
Technical Paper

A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine

The objective of this study was to evaluate iso-butanol (C4H9OH) as an alternative fuel for spark ignition engines. Unlike methanol (CH3OH) and ethanol (C2H5OH), iso-butanol has not been extensively studied in the past as either a fuel blend candidate with gasoline or straight fuel. The performance of a single cylinder engine (ASTM=CFR) was studied using alcohol-gasoline blends under different input parameters. The engine operating conditions were: three carburetor settings (three different fuel flow rates), spark timings of 5°, 10°, 15°, 20°, and 25° BTDC, and a range of compression ratios from a minimum of 7.5 to a maximum of 15 in steps of one depending on knock. The fuels tested were alcohol-gasoline blends having 5%, 10%, 15%, and 20% of iso-butanol, ethanol, and methanol. And also as a baseline fuel, pure gasoline (93 ON) was used. The engine was run at a constant speed of 800 RPM.
Technical Paper

A Study of Emissions from CNG and Diesel Fueled Heavy-Duty Vehicles

The West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory was employed to conduct chassis dynamometer tests in the field to measure the exhaust emissions from heavy-duty buses and trucks. This laboratory began operation in the field in January, 1992. During the period January, 1992 through June, 1993, over 150 city buses, trucks, and tractors operated by 18 different authorities in 11 states were tested by the facility. The tested vehicles were powered by 14 different types of engines fueled with natural gas (CNG or LNG), methanol, ethanol, liquified petroleum gas (LPG), #2 diesel, and low sulfur diesel (#1 diesel or Jet A). Some of the tested vehicles were equipped with exhaust after-treatment systems. In this paper, a total of 12 CNG-fueled and #2 diesel-fueled transit buses equipped with Cummins L-10 engines, were chosen for investigation.
Technical Paper

An Approach to Simulate Chassis Dynamometer Test Cycles with Engine Dynamometer Test Cycles for Heavy-Duty Urban Buses

A mathematical model has been developed to transfer Chassis Dynamometer (CD) test cycles for heavy duty vehicles to the equivalent Engine Dynamometer (ED) test cycles. The model assumed a generalized drivetrain layout, and a variable drive line efficiency. An interactive computer code was written to represent the mathematical model for different drivetrain systems. Several CD test cycles were used to obtain equivalent ED test cycles for a sample based upon an urban bus equipped with an automatic transmission. Results showed the possibility of simulating CD test cycles with equivalent ED test cycles for heavy-duty urban buses under certain assumptions.
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Journal Article

An Experimental Investigation of the Transient Effects Associated with Wing Deployment During Ballistic Flight

Mortar weapons systems have existed for more than five hundred years. Though modern tube-launched rounds are far more advanced than the cannon balls used in the 15th century, the parabolic trajectory and inability to steer the object after launch remains the same. Equipping the shell with extending aerodynamic surfaces transforms the unguided round into a maneuverable munition with increased range [1] and precision [2]. The subject of this work is the experimental analysis of transient aerodynamic behavior of a transforming tube-launched unmanned aerial vehicle (UAV) during transition from a ballistic trajectory to winged flight. Data was gathered using a series of wind tunnel experiments to determine the lift, drag, and pitching moment exerted on the prototype in various stages of wing deployment. Flight models of the design were broken down into three configurations: “round”, “transforming”, and “UAV”.
Technical Paper

Analysis of Compressed Air and Process Heating Systems - A Case Study from Automotive Parts Manufacturer in Mexico

Automotive industries in the US and around the world have enormous impact on the economy of each country. Not just the major vehicle manufacturer, but all the other companies in the supply chain are equally important. This was evident with the earthquake and Tsunami that happened in March 2011. Because of the massive destruction at suppliers' facilities, the automakers in the US and other countries struggled to get the necessary parts and supplies. This created a ripple effect throughout the world and led to the closure of several automakers' facilities for a long time. Thus, the automotive supply chains are as important as the main automotive manufacturing facilities. Since these suppliers produce a lot of parts and supplies, the corresponding energy usage is also significant. The current research is focused on compressed air and process heating system analysis at one of the automotive parts manufacturer in Mexico.
Technical Paper

Analysis of RF Corona Discharge Plasma Ignition

Corona discharge from a RF quarter wave coaxial cavity resonator is considered as a plasma ignition source for spark ignited (SI) internal combustion (IC) engines. The gaseous discharge processes associated with this device are analyzed using principles of gas kinetics and gaseous electronics, with assumed values for the electric field strength. Corona discharge occurs when the electric field shaped and concentrated by a single electrode exceeds the breakdown potential of the surrounding gas. Ambient electrons, naturally present due to ionizing radiation, drift in the direction of the externally applied field, gaining energy while undergoing elastic collisions with neutral molecules. After gaining sufficient energy they dissociate, excite, or ionize the neutral particles through inelastic collision, creating additional electrons. This process leads to avalanche electrical breakdown of the gas within about 10-8 sec.
Technical Paper

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization

Speed-time and video data were logged for tractor-trailers performing local deliveries in Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the driver-to-driver variation of NOx was under 4%, although the driver-to-driver variations of CO and PM were higher.
Technical Paper

Automobile Body Panel Color Measurement Test

It has been proposed that an automated remote color inspection of automobile body panels is possible with a reasonably precise color measurement. This paper outlines a test of a new 3D color measurement technology as applied to this task and presents the results of the first test. A camera is set up several feet away from a car body; a 3D orientation measuring system takes both 3D and color data from the car. The raw data is presented as a set of 3D graphs; the geometry-corrected data is also provided. Statistical analysis is presented to indicate system precision.
Technical Paper

Basic Design of the Rand Cam Engine

The Rand Cam engine is a novel design which avoids the use of pistons in favor of a cavity of varying size and shape. A set of vanes protrudes from a rotor into a circular trough in a stator. The vanes seal to the walls and base of the trough, which is of varying depth, and progress around the trough with rotation of the rotor. These vanes therefore pass through the rotor and are constrained to move parallel to the rotational axis. Intake and exhaust processes occur through ports in the stator wall which are revealed by the passing vanes. Advantages of the basic design include an absence of valves, reduction in reciprocating masses, presence of an integral flywheel in the rotor and strong fluid movement akin a swirl induced by the relative velocity between the rotor and stator.
Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of year, and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to spark ignition operations simulated engine operation under lean-combustion, low-speed, and medium load conditions. To eliminate the effect of different gas energy density, three NG blends of similar lower heating value but different H/C ratio have been investigated at fixed spark timing.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Characterization of Emissions from Hybrid-Electric and Conventional Transit Buses

Hybrid-electric transit buses offer benefits over conventional transit buses of comparable capacity. These benefits include reduced fuel consumption, reduced emissions and the utilization of smaller engines. Factors allowing for these benefits are the use of regenerative braking and reductions in engine transient operation through sophisticated power management systems. However, characterization of emissions from these buses represents new territory: the whole vehicle must be tested to estimate real world tailpipe emissions levels and fuel economy. The West Virginia University Transportable Heavy Duty Emissions Testing Laboratories were used to characterize emissions from diesel hybrid-electric powered as well as diesel and natural gas powered transit buses in Boston, MA and New York City.