Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Multidisciplinary Design Optimization of BEV Body Structure

2015-01-14
2015-26-0229
Blade Electric Vehicle (BEV) with a light body plays an important role in saving the energy and reducing the exhaust emission. However, reducing the body weight need to meet the heterogeneous attributes such as structural, safety and NVH (Noise, Vibration and Harshness) performance. With the rapid development of finite element (FE) analysis technology, simulation analysis is widely used for researching the complex engineering design problem. Multidisciplinary Design Optimization (MDO) of a BEV body is a challenging but meaningful task in the automotive lightweight. In present research, the MDO is introduced to optimize a BEV Body-in-White (BIW).
Technical Paper

Relationship between Braking Force and Pedal Force of a Pedal Controlled Parallelized Energy-Recuperation Retarder System

2014-04-01
2014-01-1783
Focusing the vehicle riding safety and global environmental problems, plenty of solutions on vehicle braking systems appeals during the recent period. Criteria and standards set up for commercial vehicles which should have equipped assisted braking systems were established by amounts of governments. Since eddy current retarders plays an important role in the area of assisted braking system, this article presents an energy-recuperation retarder, which is parallel connected with the driveline through a planet gear system. This paper offers a particular Energy-Recuperation Eddy Current Retarder (ERECR) system with a pedal control system and its characteristics is presented, either. Initially, the constitution of the energy-recuperation eddy current retarder system is established whereas the working principle of the energy-recuperation eddy current retarder is presented by modeling the system and simulation.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
Technical Paper

The Organic Medium Physical State Analysis for Engine Exhaust Thermal Recovery

2015-04-14
2015-01-1610
The Organic Rankine Cycle System is an effective approach for recovering the engine exhaust thermal energy. The physical characteristic of the Rankine fluid is the key factor for the capacity and the stability of the expander power output. In the research, the influences of the evaporator organic medium state and flow rate on the expander power output are fully analyzed for the sufficient utilization of the waste thermal energy. Firstly, the exhaust characteristics of the diesel engine were processed by the data of the bench test. Then, the integral mathematical model of the Organic Rankine Cycle was built. Based on the comparison for the 2-zone and 3-zone evaporator, the influence for expander output are analyzed especially emphasis on the factors of engine working condition, the flow rate, temperature and state of Rankine fluid.
X