Refine Your Search

Topic

Search Results

Technical Paper

A Method of Battery State of Health Prediction based on AR-Particle Filter

2016-04-05
2016-01-1212
Lithium-ion battery plays a key role in electric vehicles, which is critical to the system availability. One of the most important aspects in battery managements systems(BMS) in electric vehicles is the stage of health(SOH) estimation. The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. The classical approach of current integration(coulomb counting) can't get the accurate values because of accumulative error. In order to provide timely maintenance and replacements of electric vehicles, several estimation approaches have been proposed to develop a reliable and accurate battery state of health estimation. A common drawback of previous algorithm is that the computation quantity is huge and not quite accurate, that is updated partially in this study.
Journal Article

A Novel Indirect Health Indicator Extraction Based on Charging Data for Lithium-Ion Batteries Remaining Useful Life Prognostics

2017-06-17
2017-01-9078
In order to solve the environmental pollution and energy crisis, Electric Vehicles (EVs) have been developed rapidly. Lithium-ion (Li-ion) battery is the key power supply equipment for EVs, and the scientific and accurate prediction of its Remaining Useful Life (RUL) has become a hot topic in the field of new energy research. The internal resistance and capacity are often used to characterize the Li-ion battery State of Health (SOH) from which RUL is obtained. However, in practical applications, it is difficult to obtain internal resistance and capacity information by using the non-intrusive measurement method. Therefore, it is necessary to extract the measurable parameters to characterize the degradation of Li-ion battery. At present, the methods of extracting health indicators based on measurable parameters have gained preliminary results, but most of them are derived from the Li-ion battery discharging data.
Technical Paper

A Strategy to Recycle the Braking Energy of HEV with EMB

2014-09-28
2014-01-2542
Recovering the braking energy and reusing it can significantly improve the fuel economy of hybrid electric vehicles (HEVs).The battery ability of recovering electricity limits the improvement of the regenerative braking performance. As one way to solve this problem, the technology of brake-by-wire can be adopted in the HEVs to use the recovery dynamically. The use of high-power electrical equipment, such as electromechanical brake (EMB), is working in the form of brake-by-wire. Due to the nature of EMB, there exists an obvious coupling relationship between the energy flow and brake force distribution. In this paper, a brake force distribution controller is proposed in HEV with EMB, which can maximize braking energy recovery, compared with the conventional distribution control without EMB. Meanwhile, an energy flow strategy working with the distribution controller is designed, which is less limited to the performance of the battery.
Journal Article

A Wavelet Neural Network Method to Determine Diesel Engine Piston Heat Transfer Boundary Conditions

2012-09-10
2012-01-1760
This paper presents a method of calculating temperature field of the piston by using a wavelet neural network (WNN) to identify the unknown boundary conditions. Because of the complexity of the heat transfer and limitations of experimental conditions of heat transfer analysis of the piston in a diesel engine, boundary conditions of the piston temperature field were usually obtained empirically, and thus the result itself was uncertain. By employing the capability of resolution analysis from a wavelet neural network, the method obtains improved boundary heat transfer coefficients with a limited number of measured temperatures. Using FEA software iteratively, results show the proposed wavelet neural network analysis method improves the prediction of unknown boundary conditions and temperature distribution consistent with the experimental data with an acceptable error.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Analysis and Modeling of Transmission Efficiency of Vehicle Driveline

2014-04-01
2014-01-1779
This work analyzes the transmission efficiency of vehicle driveline including the gearbox, universal transmission and differential. Based on the structure of transmission, mathematic models are built to analyze transmission's characteristics. However, an experiment reveals the limitation of this method. Then, the paper statistically analyzes the experimental data and mainly analyzes the influencing factors. Then Neural Network is used to build the efficiency model. A method called “filling data and gradually extrapolating” is used when building neural network model. Finally, the neural network model is used in the simulation of fuel consumption. The conclusion is Neural Network model can imitate the transmission efficiency of vehicle driveline efficiently, but its internal structure is not clear so other modeling methods are needed to be found.
Technical Paper

Avoiding Accelerating Incorrectly While Steering with CAN Networks

2004-03-08
2004-01-0200
People, vehicles and circumstances are the three key factors, which affect transportation systems. Offering more information to the driver and helping him observe on all sides so that he can make decisions correctly are of great importance for reducing accidents. According to the present traffic regulations, in this paper we focus on the rules and process used during steering and proposed to implement them in a car information central control system based on CAN. A comparison of the brake time between brake by driver and by radars revealed the great interest of using ECUs connected by CAN network.
Technical Paper

Battery Thermal Management System Using Water as a Phase Change Material

2017-10-08
2017-01-2454
In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
Technical Paper

Big-Data Based Online State of Charge Estimation and Energy Consumption Prediction for Electric Vehicles

2016-04-05
2016-01-1200
Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
Technical Paper

Body Load Identification for BEV Based on Power Spectrum Decomposition under Road Excitation

2014-06-30
2014-01-2044
As motor assembly of Battery Electric Vehicle (BEV) replaces engine system of Internal Combustion Engine (ICE) vehicle, interior structure-borne noise induced by road random excitation becomes more prominent under middle and high speed. The research is focused on central driving type BEV. In order to improve interior noise in middle and low frequency range, dynamic load of BEV body must be identified. Consequently the structural noise induced by road excitation is conducted. The limitations of common identification method for dynamic body load are analyzed. The applied several identification methods are proposed for deterministic dynamic load such as engine or motor. Random dynamic load generated by road excitation is different from deterministic dynamic load. The deterministic load identification method cannot be applied to the random load directly. An identification method of dynamic body load for BEV is presented based on power spectrum decomposition.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Journal Article

Design of the Linear Quadratic Control Strategy and the Closed-Loop System for the Active Four-Wheel-Steering Vehicle

2015-05-05
2015-01-9107
In the field of active safety, the active four-wheel-steering (4WS) system seems to be an attractive alternative and an effective tool to improve the vehicles' handling stability in lane-keeping control performance. Under normal using condition, the vehicle's lateral acceleration is comparatively small, and the mathematic relationship between the small side force excitation and the small slip angle of the tire is in the linear region. Furthermore, the effects of roll, heave, and pitch motions are neglected as well as the dynamic characteristics of the tires and suspension system in this work. Therefore, the linear quadratic control (LQC) theory is used to ensure that the output of the 4WS control system can keep track of the desired yaw rate and zero-sideslip-angle response can also be realized at the same time.
Technical Paper

Development and Research of Laser Ranging Vehicle Driving Deviation Test System

2019-04-02
2019-01-0926
Before the new car rolls from the line, due to assembly errors, inaccurate four-wheel positioning, etc., the vehicle will run off on a flat road, which will affect the driving comfort and safety. At present, most automobile manufacturers choose to perform the deviation test in the process of vehicle rolls from the line. Compared with other detection methods, the online deviation test system is developed with high precision of laser ranging, fast response and good reliability, which can realize fast and high-precision detection of vehicle deviation. In this paper, test system software is developed based on the LABVIEW, a variety of communication methods to build the communication system, using information check and queue task processing to control, to meet the test needs. Firstly, the calculation model of the deviation of the test system is established.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Driving Force Coordinated Control of Separated Axle Hybrid Electric Dump Truck

2017-10-08
2017-01-2462
Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
Technical Paper

Driving Path Planning System under Vehicular Active Safety Constraint

2016-09-27
2016-01-8105
Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
Technical Paper

Engine Cycle Simulation and Development Engine of a Gasoline

2007-10-29
2007-01-4103
In order to acquire low fuel consumption while the engine is running at low speeds and maintain the high power output of the traditional 4-valve engine at high speeds, multiple camshafts were applied in gasoline engines. An engine cycle simulation process of a gasoline engine with multiple camshaft profiles was presented in this paper. Engine cycle models were set up to describe external characteristic at 14 different speeds. A one-dimension model was used to describe the transient heat and mass transfer in pipes of the gasoline engine. In-cylinder combustion model was calibrated by engine test results. The simulation results showed a good agreement with engine testing results. Simulation and experimental research showed the volumetric efficiency and torque were low from 2500rpm to 3500rpm. Some parametrical study was presented for performance improvement of intermediate speeds, including changing induction-pipe length and putting off multiple camshafts shift.
Technical Paper

Experiment Study and Design of Self-excited Eddy Current Retarder

2013-11-27
2013-01-2825
Good braking performance is an important guarantee for the vehicle driving. In the condition of frequent or prolonged braking, the overheating problem for the traditional mechanical braking device causes the recession of the braking performance, which is a prominent problem especially for the commercial vehicle perennial traveling in the mountains. Eddy current retarder can reduce the mechanical brake load as a kind of auxiliary braking device. Thus, the temperature of the mechanical braking device would not be too high, and the traveling safety of the vehicle can be ensured. But eddy current retarder would cause an enormous impact for automobile battery when it starts up and huge electricity energy would be consumed which means that more automotive batteries are needed. Considering above, a kind of self-excited eddy current retarder is developed in the paper.
X