Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Pressure Drop and Heat Transfer Analysis of Power Battery Liquid Cooling System

2022-12-16
2022-01-7122
The battery liquid cooling system can ensure that the battery works within a suitable temperature range, improve the safety performance of the battery system, and ensure the cruising range. This paper introduces a design scheme of a stamped double-parallel liquid cooling plate. Based on the STAR-CCM+ simulation software, a thermal simulation model of the battery management system is established to analyze the thermal behavior of the battery system and to study the effect of the inlet mass flow rate on the temperature of the top surface of the batteries. At the same time, with the analysis of the proportion of pressure drop of each component in the liquid cooling plate, an optimization of inserted part in the liquid cooling plate is proposed. The numerical analysis results are compared with the experimental results of the pressure drop to improve the effectiveness of the optimization scheme.
Technical Paper

The Application of Superelement Modeling Method in Vehicle Body Dynamics Simulation

2016-09-27
2016-01-8050
In this paper, we propose a method of dynamics simulation and analysis based on superelement modeling to increase the efficiency of dynamics simulation for vehicle body structure. Using this method, a certain multi-purpose vehicle (MPV) body structure was divided into several subsystems, and the modal parameters and frequency response functions of which were obtained through superelement condensation, residual structure solution, and superelement data restoration. The study shows that compared to the traditional modeling method, the computational time for vehicle body modal analysis can be reduced by 6.9% without reducing accuracy; for the purpose of structural optimization, the computational time can be reduced by 87.7% for frequency response analyses of optimizations; consistency between simulation and testing can be achieved on peak frequency points and general trends for the vibration frequency responses of interior front row floors under accelerating conditions.
X